
Saturday, May 1, 2021 NAVEEN B

THE 8051 ARCHITECTURE

By Dr. Naveen B

Saturday, May 1, 2021 NAVEEN B

Contents:
Introduction

Architecture

8051 Microcontroller Hardware

Pin Description of the 8051

Registers

Memory mapping in 8051

8051 Flag bits and the PSW register

Stack in the 8051

I/O pins, ports & circuits

Timers & Counters

Serial Data I/O

Interrupts

8051 features
• 8 bit CPU with reg. A & B

• 16 bit PC & Data pointer (DPTR)

• 8 bit PSW, 8 bit SP, onchip oscillator & clock circuits

• 64k ROM, in which 4K is on-chip, full duplex serial SBUF

• External RAM of 64K bytes & Internal RAM of 128 bytes :

- 4 reg. banks each containing 8 registers

- 80 bytes of general purpose data memory

-16 bytes which may be addressed at the bit level

• 32 I/O pins arranged as 4 ports

• Two 16 bit timer counters, T0 & T1

• 2 external & 3 internal interrupt sources

• Control registers: TCON, TMOD, SCON, PCON, IP, IE
Saturday, May 1, 2021 NAVEEN B

BNMSaturday, May 1, 2021 NAVEEN B

Saturday, May 1, 2021 NAVEEN B

Pin Description of the 8051

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1

(T0)P3.4
(T1)P3.5

XTAL2
XTAL1

GND

(INT0)P3.2

(INT1)P3.3

(RD)P3.7
(WR)P3.6

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)

EA/VPP
ALE/PROG

PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

8051

(8031)

Saturday, May 1, 2021 NAVEEN B

Pins of 8051（1/4）

• Vcc（pin 40）：

– Vcc provides supply voltage to the chip.

– The voltage source is +5V.

• GND（pin 20）：ground

• XTAL1 and XTAL2（pins 19,18）：

– These 2 pins provide external clock.

– Way 1：using a quartz crystal oscillator 

– Way 2：using a TTL oscillator 

Saturday, May 1, 2021 NAVEEN B

Pins of 8051（2/4）

• RST（pin 9）：reset

– It is an input pin and is active high（normally low）.

• The high pulse must be high at least 2 machine cycles.

– It is a power-on reset.

• Upon applying a high pulse to RST, the microcontroller will

reset and all values in registers will be lost.

• Reset values of some 8051 registers 

– Way 1：Power-on reset circuit 

– Way 2：Power-on reset with debounce 

Saturday, May 1, 2021 NAVEEN B

Pins of 8051（3/4）

• /EA（pin 31）：external access

– There is no on-chip ROM in 8031 and 8032 .

– The /EA pin is connected to GND to indicate the code is stored

externally.

– For 8051, /EA pin is connected to Vcc.

– “/” means active low.

• /PSEN（pin 29）：program store enable

– This is an output pin and is connected to the OE pin of the ROM.

Saturday, May 1, 2021 NAVEEN B

Pins of 8051（4/4）

• ALE（pin 30）：address latch enable

– It is an output pin and is active high.

– 8051 port 0 provides both address and data.

– The ALE pin is used for de-multiplexing the address and data by

connecting to the G pin of the 74LS373 latch.

– /PSEN ＆ ALE are used for external ROM.

• I/O port pins

– The four ports P0, P1, P2, and P3.

– Each port uses 8 pins.

– All I/O pins are bi-directional.

Saturday, May 1, 2021 NAVEEN B

Figure 4-2 (a). XTAL Connection to 8051

C2

30pF

C1

30pF

XTAL2

XTAL1

GND

• Using a quartz crystal oscillator

• We can observe the frequency on the XTAL2 pin.



Saturday, May 1, 2021 NAVEEN B

Figure 4-2 (b). XTAL Connection to an External Clock Source

N

C

EXTERNAL

OSCILLATOR

SIGNAL

XTAL2

XTAL1

GND

• Using a TTL oscillator

• XTAL2 is unconnected.



RESET Value of Some 8051 Registers:

0000DPTR

0007SP

0000PSW

0000B

0000ACC

0000PC

Reset ValueRegister

RAM are all zero.
Saturday, May 1, 2021 NAVEEN B

Saturday, May 1, 2021 NAVEEN B

Figure 4-3 (a). Power-On RESET Circuit

30 pF

30 pF

8.2 K

10 uF

+

Vcc

11.0592 MHz

EA/VPP
X1

X2

RST

31

19

18

9



Saturday, May 1, 2021 NAVEEN B

Figure 4-3 (b). Power-On RESET with Debounce

EA/VPP

X1

X2
RST

Vcc

10 uF

8.2 K

30 pF

9

31



Saturday, May 1, 2021 NAVEEN B

Pins of I/O Port

• The 8051 has four I/O ports

– Port 0 （pins 32-39）：P0（P0.0～P0.7）

– Port 1（pins 1-8） ：P1（P1.0～P1.7）

– Port 2（pins 21-28）：P2（P2.0～P2.7）

– Port 3（pins 10-17）：P3（P3.0～P3.7）

– Each port has 8 pins.

• Named P0.X （X=0,1,...,7）, P1.X, P2.X, P3.X

• Ex：P0.0 is the bit 0（LSB）of P0

• Ex：P0.7 is the bit 7（MSB）of P0

• These 8 bits form a byte.

• Each port can be used as input or output (bi-direction).


Saturday, May 1, 2021 NAVEEN B

Registers
Totally 34 GPRs ie. A & B registers along with 4 banks – each bank has 8

registers: R0 – R7. Other registers are PC, DPTR & SP

A

B

R0

R1

R3

R4

R2

R5

R7

R6

DPH DPL

PC

DPTR

PC

Some 8051 16-bit Register

Some 8-bit Registers of the

8051

A and B registers
• Holds the results of math & logical operations

• ‘ A’ register is also used for data transfers between 8051

& any external memory

• ‘B’ register is used with ‘A’ register for multiplication &

division operations.

Saturday, May 1, 2021 NAVEEN B

Saturday, May 1, 2021 NAVEEN B

Memory mapping in 8051

• ROM memory map in 8051 family

0000H

0FFFH

0000H

1FFFH

0000H

7FFFH

8751

AT89C51
8752

AT89C52

4k

DS5000-32

8k 32k

from Atmel Corporation
from Dallas Semiconductor

• RAM memory space allocation in the 8051

7FH

30H

2FH

20H

1FH

17H

10H

0FH

07H

08H

18H

00H

Register Bank 0

(Stack) Register Bank 1

Register Bank 2

Register Bank 3

Bit-Addressable RAM

Scratch pad RAM

Saturday, May 1, 2021 NAVEEN B

• 00 – 1F : 4 Banks x 8 = 32 registers

• ONE bank at a time (RS1-RS0)

• 20 – 2F : 16 more locations = 16 Bytes

• Also BIT addressable (00-7F address for the 128 bits)

• 30 – 7F Scratch Pad (Store-Read-Write-Modify data)

• General Purpose RAM (80 bytes)

• 80 – FF : Special Purpose CPU Area

• Also Contains the SFRs

A Quick Review of USER’s space…….

Saturday, May 1, 2021 NAVEEN B

Memory Space

Saturday, May 1, 2021 NAVEEN B

Bit Addressable RAM

Summary
of the 8051
on-chip
data
memory

(RAM)

Saturday, May 1, 2021 NAVEEN B

Summary
of the 8051
on-chip
data
memory

Bit Addressable RAM
(Special Function Registers)

Saturday, May 1, 2021 NAVEEN B

Register Banks

 Four banks of 8 bit-sized registers, R0 to R7

 Addresses are :

18 - 1F for bank 3

10 - 17 for bank 2

08 - 0F for bank 1

00 - 07 for bank 0 (default)

 Active bank selected by bits [RS1, RS0] in PSW.

 Permits fast “context switching” in interrupt service
routines (ISR).

Saturday, May 1, 2021 NAVEEN B

Program Status Word (PSW)

Saturday, May 1, 2021 NAVEEN B

8051 Flag bits and the PSW register
• PSW Register

CY AC F0 RS1 OVRS0 P--

CYPSW.7Carry flag

ACPSW.6Auxiliary carry flag

--PSW.5Available to the user for general purpose

RS1PSW.4Register Bank selector bit 1

RS0PSW.3Register Bank selector bit 0

OVPSW.2Overflow flag

--PSW.1User define bit

PPSW.0Parity flag Set/Reset odd/even parity

For odd Parity, P=1, ;

RS1 RS0 Register Bank Address

0 0 0 00H-07H

0 1 1 08H-0FH

1 0 2 10H-17H

1 1 3 18H-1FH

Saturday, May 1, 2021 NAVEEN B

Instructions that Affect Flag Bits:

Note: X can be 0 or 1

Saturday, May 1, 2021 NAVEEN B

Example:

MOV A,#38H

ADD A,#2FH

38 00111000

+2F +00101111

---- --------------

67 01100111

CY=0 AC=1 P=1 OV=0

Example:

MOV A,#88H

ADD A,#93H

88 10001000

+93 +10010011

---- --------------

11B 10 0011011

CY=1 AC=0 P=0 OV=1

Example:

MOV A,#9CH

ADD A,#64H

9C 10011100

+64 +01100100

---- --------------

100 1 00000000

CY=1 AC=1 P=0 OV=0

Saturday, May 1, 2021 NAVEEN B

Saturday, May 1, 2021 NAVEEN B

Accessing External

Code Memory

Saturday, May 1, 2021 NAVEEN B

Accessing External

Data Memory

Figure
2-11

Interface
to 1K
RAM

Saturday, May 1, 2021 NAVEEN B

Stack in the 8051

• The register used to access
the stack is called SP (stack
pointer) register.

• The stack pointer in the
8051 is only 8 bits wide,
which means that it can take
value 00 to 7FH.

• When 8051 powered up, the
SP register contains value
07.

7FH

30H

2FH

20H

1FH

17H

10H

0FH

07H

08H

18H

00H
Register Bank 0

(Stack) Register Bank 1

Register Bank 2

Register Bank 3

Bit-Addressable RAM

Scratch pad RAM

Saturday, May 1, 2021 NAVEEN B

Example:

MOV R6,#25H

MOV R1,#12H

MOV R4,#0F3H

PUSH 6 *Operand is 8 bit & Direct addressing only
PUSH 1

PUSH 4

0BH

0AH

09H

08H

Start SP=07H

25

0BH

0AH

09H

08H

SP=08H

F3

12

25

0BH

0AH

09H

08H

SP=0AH

12

25

0BH

0AH

09H

08H

SP=09H

PC (Program Counter)
• 16 bit registers used to hold the address of a byte in

memory

• Program instructions are fetched by PC

• On chip ROM addresses 0000h to 0FFFh & external

addresses that exceed 0FFFh

• PC is the only reg. that does not have Internal address.

DPTR (Data pointer)

• Two 8 bit regs. DPH & DPL

• Used to furnish memory addresses for internal &

external code and external Data access.

• DPTR does not have a single internal address

• DPH & DPL each assigned a address
Saturday, May 1, 2021 NAVEEN B

Saturday, May 1, 2021 NAVEEN B

I/O Port Circuitry

Saturday, May 1, 2021 NAVEEN B

Saturday, May 1, 2021 NAVEEN B

Saturday, May 1, 2021 NAVEEN B

Alternate Pin-functions

Saturday, May 1, 2021 NAVEEN B

I/O Port Programming



Port 1（pins 1-8）

• Port 1 is denoted by P1.

– P1.0 ~ P1.7

• We use P1 as examples to show the operations on ports.

– P1 as an output port (i.e., write CPU data to the external pin)

– P1 as an input port (i.e., read pin data into CPU bus)

Saturday, May 1, 2021 NAVEEN B

A Pin of Port 1

8051 IC

D Q

Clk Q

Vcc

Load(L1)

Read latch

Read pin

Write to latch

Internal CPU

bus

M1

P1.X

pin
P1.X

TB1

TB2

P0.x

Hardware Structure of I/O Pin

• Each pin of I/O ports

– Internal CPU bus：communicate with CPU

– A D latch store the value of this pin

• D latch is controlled by “Write to latch”

– Write to latch＝1：write data into the D latch

– 2 Tri-state buffer：

• TB1: controlled by “Read pin”

– Read pin＝1：really read the data present at the pin

• TB2: controlled by “Read latch”

– Read latch＝1：read value from internal latch

– A transistor M1 gate

• Gate=0: open

• Gate=1: close
Saturday, May 1, 2021 NAVEEN B

Saturday, May 1, 2021 NAVEEN B

Tri-state Buffer

Output Input

Tri-state control

(active high)

L H Low

Highimpedance

(open-circuit)
HH

L H



Saturday, May 1, 2021 NAVEEN B

Writing “1” to Output Pin P1.X

D Q

Clk Q

Vcc

Load(L1)

Read latch

Read pin

Write to latch

Internal CPU

bus

M1

P1.X

pin
P1.X

8051 IC

2. output pin is

Vcc1. write a 1 to the pin
1

0 output 1

TB1

TB2

Saturday, May 1, 2021 NAVEEN B

Writing “0” to Output Pin P1.X

D Q

Clk Q

Vcc

Load(L1)

Read latch

Read pin

Write to latch

Internal CPU

bus

M1

P1.X

pin
P1.X

8051 IC

2. output pin is

ground1. write a 0 to the pin
0

1 output 0

TB1

TB2

Saturday, May 1, 2021 NAVEEN B

Port 1 as Output（Write to a Port）

• Send data to Port 1：

MOV A,#55H

BACK: MOV P1,A

ACALL DELAY

CPL A

SJMP BACK

– Let P1 toggle.

– You can write to P1 directly.

Saturday, May 1, 2021 NAVEEN B

Reading Input v.s. Port Latch

• When reading ports, there are two possibilities：

– Read the status of the input pin. （from external pin value）

• MOV A, PX

• JNB P2.1, TARGET ; jump if P2.1 is not set

• JB P2.1, TARGET ; jump if P2.1 is set

– Read the internal latch of the output port.

• ANL P1, A ; P1 ← P1 AND A

• ORL P1, A ; P1 ← P1 OR A

• INC P1 ; increase P1

Saturday, May 1, 2021 NAVEEN B

Reading “High” at Input Pin

D Q

Clk Q

Vcc

Load(L1)

Read latch

Read pin

Write to latch

Internal CPU bus

M1

P1.X pin

P1.X

8051 IC

2. MOV A,P1

external pin=High
1. write a 1 to the pin MOV

P1,#0FFH

1

0

3. Read pin=1 Read latch=0

Write to latch=1

1

TB1

TB2

Saturday, May 1, 2021 NAVEEN B

Reading “Low” at Input Pin

D Q

Clk Q

Vcc

Load(L1)

Read latch

Read pin

Write to latch

Internal CPU bus

M1

P1.X pin

P1.X

8051 IC

2. MOV A,P1

external pin=Low1. write a 1 to the pin

MOV P1,#0FFH

1

0

3. Read pin=1 Read latch=0

Write to latch=1

0

TB1

TB2

Saturday, May 1, 2021 NAVEEN B

Port 1 as Input（Read from Port）

• In order to make P1 an input, the port must be programmed by writing 1 to

all the bit.

MOV A,#0FFH ;A=11111111B

MOV P1,A ;make P1 an input port

BACK: MOV A,P0 ;get data from P0

MOV P2,A ;send data to P2

SJMP BACK

– To be an input port, P0, P1, P2 and P3 have similar methods.

Saturday, May 1, 2021 NAVEEN B

Instructions For Reading an Input Port

Mnemonics Examples Description

MOV A,PX MOV A,P2
Bring into A the data at P2

pins

JNB PX.Y,.. JNB P2.1,TARGET Jump if pin P2.1 is low

JB PX.Y,.. JB P1.3,TARGET Jump if pin P1.3 is high

MOV C,PX.Y MOV C,P2.4 Copy status of pin P2.4 to CY

• Following are instructions for reading external pins of ports:

Saturday, May 1, 2021 NAVEEN B

Reading Latch

• Exclusive-or the Port 1：

MOV P1,#55H ;P1=01010101

ORL P1,#0F0H ;P1=11110101

1. The read latch activates TB2 and bring the data from the Q latch into

CPU.

• Read P1.0=0

2. CPU performs an operation.

• This data is ORed with bit 1 of register A. Get 1.

3. The latch is modified.

• D latch of P1.0 has value 1.

4. The result is written to the external pin.

• External pin (pin 1: P1.0) has value 1.

Saturday, May 1, 2021 NAVEEN B

Reading the Latch

D Q

Clk Q

Vcc

Load(L1)

Read latch

Read pin

Write to latch

Internal CPU bus

M1

P1.X pin

P1.X

8051 IC

4. P1.X=12. CPU compute P1.X OR 1

0

0

1. Read pin=0 Read latch=1 Write to

latch=0 (Assume P1.X=0 initially)

1

TB1

TB2

3. write result to latch

Read pin=0 , Read latch=0

Write to latch=1

1

0

Saturday, May 1, 2021 NAVEEN B

Read-modify-write Feature

• Read-modify-write Instructions

• This features combines 3 actions in a single instruction：

1. CPU reads the latch of the port

2. CPU perform the operation

3. Modifying the latch

4. Writing to the pin

– Note that 8 pins of P1 work independently.

Saturday, May 1, 2021 NAVEEN B

Port 1 as Input（Read from latch）

• Exclusive-or the Port 1：

MOV P1,#55H ;P1=01010101

AGAIN: XOR P1,#0FFH ;complement

ACALL DELAY

SJMP AGAIN

– Note that the XOR of 55H and FFH gives AAH.

– XOR of AAH and FFH gives 55H.

– The instruction read the data in the latch (not from the pin).

– The instruction result will put into the latch and the pin.

Saturday, May 1, 2021 NAVEEN B

Read-Modify-Write Instructions

ExampleMnemonics

SETB P1.4SETB PX.Y

CLR P1.3CLR PX.Y

MOV P1.2,CMOV PX.Y,C

DJNZ P1,TARGETDJNZ PX, TARGET

INC P1INC

CPL P1.2CPL

JBC P1.1, TARGETJBC PX.Y, TARGET

XRL P1,AXRL

ORL P1,AORL

ANL P1,AANL

DEC P1DEC

Saturday, May 1, 2021 NAVEEN B

You are able to answer this Questions:

• How to write the data to a pin？

• How to read the data from the pin？

– Read the value present at the external pin.

• Why we need to set the pin first？

– Read the value come from the latch（not from the external

pin）.

• Why the instruction is called read-modify write?

Saturday, May 1, 2021 NAVEEN B

Other Pins

• P1, P2, and P3 have internal pull-up resisters.

– P1, P2, and P3 are not open drain.

• P0 has no internal pull-up resistors and does not connects to

Vcc inside the 8051.

– P0 is open drain.

– Compare the figures of P1.X and P0.X. 

• However, for a programmer, it is the same to program P0, P1,

P2 and P3.

• All the ports upon RESET are configured as output.

Saturday, May 1, 2021 NAVEEN B

A Pin of Port 0

8051 IC

D Q

Clk Q

Read latch

Read pin

Write to latch

Internal CPU

bus

M1

P0.X

pin
P1.X

TB1

TB2

P1.x

Saturday, May 1, 2021 NAVEEN B

Port 0（pins 32-39）

• P0 is an open drain.

– Open drain is a term used for MOS chips in the same way

that open collector is used for TTL chips. 

• When P0 is used for simple data I/O we must connect it to

external pull-up resistors.

– Each pin of P0 must be connected externally to a 10K ohm

pull-up resistor.

– With external pull-up resistors connected upon reset, port 0

is configured as an output port.

Saturday, May 1, 2021 NAVEEN B

Port 0 with Pull-Up Resistors

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7

DS5000

8751

8951

Vcc
10 K

P
o

rt

0

Saturday, May 1, 2021 NAVEEN B

Dual Role of Port 0

• When connecting an 8051 to an external memory, the 8051 uses

ports to send addresses and read instructions.

– 8051 is capable of accessing 64K bytes of external memory.

– 16-bit address：P0 provides both address A0-A7, P2 provides

address A8-A15.

– Also, P0 provides data lines D0-D7.

• When P0 is used for address/data multiplexing, it is connected to the

74LS373 to latch the address.

– There is no need for external pull-up resistors

Saturday, May 1, 2021 NAVEEN B

74LS373

D

74LS373ALE

P0.0

P0.7

PSEN

A0

A7

D0

D7

P2.0

P2.7

A8

A15

OE

OC

EA

G

8051 ROM

Saturday, May 1, 2021 NAVEEN B

Reading ROM (1/2)

D

74LS373ALE

P0.0

P0.7

PSEN

A0

A7

D0

D7

P2.0

P2.7

A8

A12

OE

OC

EA

G

8051 ROM

1. Send address to

ROM

2. 74373 latches the

address and send to

ROM

Address

Saturday, May 1, 2021 NAVEEN B

Reading ROM (2/2)

D

74LS373ALE

P0.0

P0.7

PSEN

A0

A7

D0

D7

P2.0

P2.7

A8

A12

OE

OC

EA

G

8051 ROM

2. 74373 latches the

address and send to

ROM

Address

3. ROM send the

instruction back

Saturday, May 1, 2021 NAVEEN B

ALE Pin

• The ALE pin is used for de-multiplexing the

address and data by connecting to the G pin of

the 74LS373 latch.

– When ALE=0, P0 provides data D0-D7.

– When ALE=1, P0 provides address A0-A7.

– The reason is to allow P0 to multiplex address and

data.

Saturday, May 1, 2021 NAVEEN B

Port 2（pins 21-28）

• Port 2 does not need any pull-up resistors since

it already has pull-up resistors internally.

• In an 8051-based system, P2 are used to

provide address A8-A15.

Saturday, May 1, 2021 NAVEEN B

Port 3（pins 10-17）

• Port 3 does not need any pull-up resistors since it already

has pull-up resistors internally.

• Although port 3 is configured as an output port upon reset,

this is not the way it is most commonly used.

• Port 3 has the additional function of providing signals.

– Serial communications signal：RxD, TxD（Chapter 10）

– External interrupt：/INT0, /INT1（Chapter 11）

– Timer/counter：T0, T1（Chapter 9）

– External memory accesses in 8031-based system：/WR,

/RD（Chapter 14）

Saturday, May 1, 2021 NAVEEN B

Port 3 Alternate Functions

17RDP3.7

16WRP3.6

15T1P3.5

14T0P3.4

13INT1P3.3

12INT0P3.2

11TxDP3.1

10RxDP3.0

PinFunctionP3 Bit



Counters & timers

To relinquish the Burden of the processor from

software loops for timing & counting , two 16 bit

counters T0 & T1 are provided. These 2 are

divided into 8 bit registers as timer low(TL0, TL1)

and high(TH0, TH1) bytes. Counter action is

controlled by timer mode control (TMOD) &

timer/counter control reg. (TCON)

Saturday, May 1, 2021 NAVEEN B

Saturday, May 1, 2021 NAVEEN BSaturday, May 1, 2021 BNM

TCON Register:

• TF1: Timer 1 overflow flag.

• TR1: Timer 1 run control bit.(set to 1 to enable timer to count)

• TF0: Timer 0 overflag.

• TR0: Timer 0 run control bit.

• IE1: External interrupt 1 edge flag.

• IT1: External interrupt 1 type flag.

• IE0: External interrupt 0 edge flag.

• IT0: External interrupt 0 type flag.

Timer mode control reg. (TMOD)

(Not bit addressable)

Saturday, May 1, 2021 NAVEEN B

Gate = 0 : start & stop are software control

(Start by SETB TRx & stop by CLR TRx)

Gate = 1 : start & stop are controlled by hardware

by an external source (Pins P3.2 & P3.3)

Saturday, May 1, 2021 NAVEEN B

Saturday, May 1, 2021 NAVEEN B

Saturday, May 1, 2021 NAVEEN B

Interrupt :

Saturday, May 1, 2021 NAVEEN B

Interrupt Vectors

Interrupt Vector Address

System Reset 0000H

External 0 0003H

Timer 0 000BH

External 1 0013H

Timer 1 001BH

Serial Port 0023H

Timer 2 002BH

Saturday, May 1, 2021 NAVEEN B

Interrupt Enable Register :

• EA : Global enable/disable.

• --- : Undefined.

• ET2 :Enable Timer 2 interrupt.

• ES :Enable Serial port interrupt.

• ET1 :Enable Timer 1 interrupt.

• EX1 :Enable External 1 interrupt.

• ET0 : Enable Timer 0 interrupt.

• EX0 : Enable External 0 interrupt.

Interrupt priority register

Bit symbol function

7 -- not implemented

6 -- not implemented

5 PT2 reserved for future use

4 PS priority for serial port interrupt

3 PT1 priority for timer 1 overflow interrupt

2 PX1 priority for external interrupt 1

1 PT0 priority for timer 0 overflow interrupt

0 PX0 priority for external interrupt 0

IP=0 (low priority)

IP=1 (High priority)

--- PX0PT0PX1PT1PSPT2---

Saturday, May 1, 2021 NAVEEN B

Interrupt priority

• If the 2 interrupts with the same priority occur at the

same time, then they have the following ranking-

- IE0, TF0, IE1, TF1, Serial interrupt (RI or TI)

Saturday, May 1, 2021 NAVEEN B

Serial data I/O
• 8051 has a full duplex serial port

• SBUF to hold data, SCON controls data

communication and PCON controls data rates

• SBUF is physically 2 regs., one is to hold write

only data and another is read only data

Saturday, May 1, 2021 NAVEEN B

Serial port control (SCON)

Bit symbol function

7 SM0 serial port mode bit 0

6 SM1 serial port mode bit 1

5 SM2 multiprocessor commn. Bit

4 REN receive enable bit

3 TB8 transmitted bit 8

2 RB8 received bit 8

1 TI transmit interrupt flag

0 RI receive interrupt flag

SM0 RITIRB8TB8RENSM2SM1

Saturday, May 1, 2021 NAVEEN B

There are 4 programmable modes for serial data commn.

SM0 SM1 Mode Description

0 0 0 shift register; baud=f/12

0 1 1 8-bit UART ; baud=variable

1 0 2 9-bit UART ; baud=f/32 or f/64

1 1 3 9-bit UART; baud=variable

Mode 0 (shift register mode) : SBUF to transmit/receive 8 data bits

using pin RXD for both functions. TXD is used to supply shift

pulses to external circuits. Baud rate is fixed at f/12.

Saturday, May 1, 2021 NAVEEN B

Mode 1 (standard UART): SBUF becomes a 10-bit full duplex

receiver/transmitter at the same time using RXD & TXD.

1 start bit, 8 data bits (LSB first) & 1 stop bit. 8 data bits go

to SBUF, start bit is discarded & stop bit is saved in RB8.

Mode 2 (multiprocessor mode): similar to mode1 except 11

bits are transmitted (9 data bits). 9th bit is copied from bit

TB8 during transmit & stored in bit RB8 when data is

received. Both start & stop bits are discarded.

For multiprocessor commn., set the 9th data bit.

Mode 3 (serial data mode): this is identical to mode 2 except

that the baud rate is as in mode 1, using timer 1 to

generate frequencies.
Saturday, May 1, 2021 NAVEEN B

PC variable Baud Rates

110 bps

150

300

600

1200

2400

4800

9600 (default)

19200

Saturday, May 1, 2021 NAVEEN B

Power mode control (PCON)

Bit symbol function

7 SMOD serial baud rate modify bit

6-4 -- not implemented

3 GF1 general purpose user flag bit 1

2 GF0 general purpose user flag bit 0

1 PD power down bit

0 IDL ideal mode bit

• This is not bit addressable

SMOD IDLPDGF0GF1----

Saturday, May 1, 2021 NAVEEN B

NAVEEN B 1

8051Instruction Set
By Dr. Naveen B

Instruction Set

Data Transfer Instructions

MOVE Destination, Source

MOV Rn, A

MOV Rn, direct

MOV DPTR, # data 16

MOVC A, @ A + DPTR

MOVC A, @ A+PC

MOVX A, @DPTR

MOVX @DPTR, A

MOVX A, @Ri ** No flags are affected

2NAVEEN B

Logical Operations
Byte level Logical operations
The operations are done in each individual bit of the source & destination

bytes.

ANL A , Rn

ORL A , @Rp

XRL A , #27h
• Destination is Accumulator or direct addressing & source may be

any addressing mode.

• Use port as a source but not as a destination

CLR A Clear Acc

CPL A Complement Acc

** No flags are affected

3NAVEEN B

Bit level Logical Operations
• It is very convenient to alter a single bit of a byte.

CPL C (Complement)

CPL bit

ANL C, bit AND direct bit to CY

ANL C, /bit

ORL C, bit

ORL C, /bit

EX:SETB 00h …Bit 0 of RAM byte 20h = 1

ANL C, /00h …C=0; bit 0 of RAM byte 20h =1

4NAVEEN B

BOOLEAN OPERATIONS
CLR C Clear CY

CLR bit Clear direct bit

SETB C Set CY

SETB bit Set direct bit (SETB P2.4)

MOV C, bit Move direct bit to CY

MOV bit, C Move CY to direct bit

MOV 7Fh, C …. Bit 7 of RAM byte 2Fh =1..Assume C=1

Note:

• CLR A --- it is for byte & only ‘A’ reg. no other

registers or addressing modes

CLR Acc.0 for individual bit in ‘A’ reg.

CLR b bits in SFRs & bit addressable area.

5NAVEEN B

Rotate and Swap Operations

RL A Rotate Acc Left : bn+1  bn

RR A Rotate Acc Right : bn  bn+1

RLC A Rotate Acc Left through Carry

RRC A Rotate Acc Right through Carry

SWAP A Exchange between the nibbles

* Only CY flag is affected in RRC A & RLC A

6NAVEEN B

Example programs:
1) Double the number in Reg. R2 & put the result in R3 & R4.

CLR C

MOV A, R2

RLC A

MOV R4, A

CLR A

RLC A

MOV R3, A

2) OR the contents of ports 1 & 2, put the result in external RAM

location 0100h

MOV A, 90h

ORL A, 0A0h

MOV DPTR, #0100h

MOVX @DPTR, A

7NAVEEN B

3) Configure P1 to read switches at P1.0 & P1.1. If

P1.0 is high, turn ON a relay connected to P2.5 by

sending a logic high o/p. If P1.0 is low, clear P2.5. If

the status of the switch at P1.1 is high, turn OFF the

relay connected to P2.6 by sending a logic low o/p. If

P1.1 is low, set P2.6 to high state.

Logic:

i/p’s at P1 o/p’s at P2

XXXXXX00 X10XXXXX

XXXXXX01 X11XXXXX

XXXXXX10 X00XXXXX

XXXXXX11 X01XXXXX

8NAVEEN B

Program:

mov p1, #0FFh

Mov p2, #00h

Mov A, p1

Anl A, #03h

Cpl Acc.1

Rl a

Rl a

Rl a

Rl a

Rl a

Mov p2, A

9NAVEEN B

4) Swap every even numbered bit of register R3 in bank 0 woth the odd

numbered bit to its left. Swap bit 0 with bit 1, bit 2 with bit 3, and so on

until bit 6 is swapped with bit 7

MOV A, R3

RL A

ANL A, #0AAh

PUSH 0E0h

MOV A, R3

RR A

ANL A, #55h

MOV R3, A

POP 0E0h

ORL 03h, A (ORL R3, A …. Not allowed)

10NAVEEN B

5. Assume that bit P2.2 is used to control an

outdoor light and bit P2.5 a light inside a

building .Show how to turn on the outside

light & turn off the inside one.

SETB C

ORL C, P2.2

mov P2.2, C

CLR C

ANL C, P2.5

mov P2.5 ,C

11NAVEEN B

6. Assume that registers A has packed BCD. Write a
pgm to convert packed BCD to two ASCII numbers
& place them in R2 & R6.

mov A, # 29h
mov R2, A
ANL A, # 0Fh
ORL A, #30h
mov R6, A
mov A, R2
ANL A, # 0F0h
RRA
RRA
RRA
RRA
ORL A, # 30h
mov R2, A

12NAVEEN B

Incrementing and decrementing

INC A ; operand may be any addressing
except Immediate

INC DPTR

DEC A :operand may be any addressing
except Immediate

There is no “DEC DPTR”
• No flags are affected

Arithmetic Instructions

13NAVEEN B

Addition and subtraction:

• ADD A, Source byte [OV, AC, CY]

• ADDC A, Source byte [OV, AC, CY]

• SUBB A, source byte [OV, AC, CY]

Subtract with borrow:

(A)  (A) - source byte -CY

‘A’ register is the destination, & source may

be any addressing mode

14NAVEEN B

Examples

Unsigned addition: This make use of the carry flag to
detect when the result of an ADD operation is a number larger
than FF h.

00 to 255d

95d = 01011111 b =5Fh

189d = 10111101 b =BDh

284d 100011100 b 11Ch

Signed addition: If unlike signed numbers are added, then it
is not possible for the result to be larger than -128 d to +127 d,
and the result will always be correct.

Ex1: -001d = 11111111 b = FF h

+027d = 00011011 b = 1Bh

+026d 100011010 b =+ 026d 11Ah

15NAVEEN B

Adding two +ve numbers, result may exceed +128d

Ex2: +100d =01100100b =64h

+050d = 00110010b 32h

150d 010010110b = -106d 096h correct result= +22d

OV=1

Ex3: +045d =00101101b =2Dh

+075d =01001011b =4Bh

+120d 001111000b =120d 078h OV=0 (result not exceeded)

The result of adding two –ve numbers together for a sum that
does not exceed the –ve limit.

Ex: - 030d = 11100010b = E2h

- 050d 11001110b = CEh

- 080d 110110000b 1B0h

OV=0

16NAVEEN B

Adding Two –ve numbers whose sum does

exceed -128d

- 070d = 10111010b = BA h

- 070d = 10111010b = BAh

- 140d =101110100b = +116d 174h

OV= 1 (correct result= -12d)

Flags Action

CY OV

0 0 none

0 1 compliment the sign

1 0 none

1 1 compliment the sign
17NAVEEN B

Unsigned subtraction:

Subtraction of a larger number from a smaller number.

015d = 00001111b = 0F0h

100d = 01100100b = 064h

- 085d =110101011b

The carry flag is set to 1 & OV=0.

2’s compliment of the result = 085d.

100d = 01100100b = 64h

015d = 00001111b = 0Fh

085d =001010101b =055h

C=0, OV=0 (Magnitude of the result is in true form).

18NAVEEN B

Signed subtraction:

When numbers of like sign are subtracted

it is impossible for the result to exceed

positive or negative magnitude limits of

+127 or -128.
+100d =01100100b(carry flag is 0 before

SUBB)=64h

sub +126d = 01111110b = 7Eh

- 026d =111100110b = 1E6h

cy=1 , OV=0

19NAVEEN B

Using two negative numbers

-061d = 11000011b (CY=0 before

SUBB) = C3h

Subb -116d = 10001100b = 8Ch

+055d 000110111b 037h

CY=0, OV=0

20NAVEEN B

An overflow is possible when subtracting

numbers of opposite sign

- 099d =10011101b(cy=0 before SUBB) =9Dh

+100d =01100100b =64h

-199d =000111001b = +057d =039h

OV= 1 , cy =0

Because the overflow flag is set to 1, the

result must be adjusted so that 2’s

compliment is 71d

21NAVEEN B

+ 087d = 01010111b(cy=0 before SUBB) = 57h

- 052d = 11001100b = cch

+139d =110001011b = -177d =18bh

OV=CY=1

The magnitude can be interpreted as +011d

The general rule is that if the overflow flag is

set to 1, then compliment the sign bit . The

overflow flag also signals that the result is

greater then - 128d or + 127d

22NAVEEN B

Multiple byte Arithmetic

+32767d

+00004d

+87654d

+78659d

ADDC A, source byte

23NAVEEN B

1) Write a pgm to add two 16 bit numbers

CLR C

mov A, # 0E7h

ADD A, # 8Dh

mov R6, A

mov A, # 3Ch

ADDC A, #3Bh

mov R7, A

24NAVEEN B

2) Write a pgm to subtract two 16 bit numbers.

CLR C

mov A, # 62h

SUBB A, # 96h

mov R7, A

mov A, # 27h

SUBB a, # 12h

mov R6 , A

25NAVEEN B

MUL AB [OV, CY]

(B : A)  A x B Always Clears CY

OV = 1 if Results > FF (not an error,

signals that the result is larger than 8-bit)

DIV AB

(A / B) Quotient in (A)

Reminder in (B)

Divide by 0  OV = 1 : Invalid result

DA A Decimal Adjust after addition
(CY flag is set if the adjusted No. exceeds 99 BCD & reset

otherwise)

26NAVEEN B

Example programs

1.Add the unsigned numbers found in the internal
RAM locations 25h,26h,&27h together & put the
result in RAM locations 31(MSB) & 30h(LSB)
Mov 31h,#00h

Mov A,25h for BCD numbers

ADD A,26h ………… DAA

Mov R0,A

Mov A,# 00h
ADDC A,31h

Mov 31h,A

Mov A,R0

ADD A,27h …………….. DAA

Mov 30h,A

Mov A,#00h

ADDC A,31h

Mov 31h,A
27NAVEEN B

2. Multiply the unsigned number in register
R3 by the unsigned number on port 2 & put
the result in external RAM locations
10h(MSB) & 11h(LSB)

Mov A,0A0h
Mov 0F0h,R3
MUL AB
mov R0, #11h
Movx @R0,A
DEC R0
Mov A,0F0H
Movx @R0,A

28NAVEEN B

3. Write a pgm to get a byte of hex data from
P1 & convert it to decimal.

mov A, # 0FFh
mov P1, A
mov A, P1
mov B, # 0Ah

DIV AB
mov R7, B
mov B, # 0Ah
DIV AB
mov R6, B
mov R5, A

29NAVEEN B

Branching Instructions

Jump & CALL instructions

• These can replace the contents of PC with a

new program address

• The difference in bytes of the present & the new

address is called the RANGE.

There are 3 ranges:

- Relative range (+127 bytes to -128 bytes)

- Absolute range (2K byte pages)

- Long range (from 0000h to FFFF h)

30NAVEEN B

Absolute range may be divided into a series of pages of
any convenient binary size such as 256bytes, 2K, 4K,
and so on….

In 8051 it has 2K page size giving a total of 32 pages.

The upper 5 bits of the PC hold the page number &
lower 11 bits hold the address with in each page.

page address (HEX)

00 0000 - 07FF

01 0800 – 0FFF

02 1000 – 17FF

. .

. .

1F F800 – FFFF

31NAVEEN B

Conditional Jumps

BIT JUMPS

• JC radd

• JNC radd

• JB bit, radd (Jump if direct Bit is set)

• JNB bit, radd (Jump if direct Bit is Notset)

• JBC bit, radd (Jump if direct Bit is set &

Clear it)

32NAVEEN B

BYTE JUMPS

• JZ radd Jump if Acc = 00 (no zero flag)

• JNZ radd

C for Compare : D for Decrement

1. CJNE Rn, # data, rel
Compare immediate data to Register : Jump if not equal

2. CJNE @Ri, # data, rel
Compare immediate data to indirect : Jump if not equal

3. CJNE A, # data, rel

4. CJNE A, direct, rel

5. DJNZ Rn, rel Dec Rn : Jump if it’s not 0

6. DJNZ direct, rel Dec direct : Jump if not 0

ALL CONDITIONAL JUMPS ARE relative JUMPS
33NAVEEN B

Unconditional Jumps
• Do not test any bit or byte

JMP @ A + DPTR Jump indirect relative to DPTR

(PC)  (A) + (DPTR) Sources are unaltered

16 bit addition

AJMP sadd Absolute Jump within the 2K space

LJMP ladd Long Jump to anywhere in the

64K memory space

SJMP radd

34NAVEEN B

CALLS AND SUBROUTINES

ACALL sadd

LCALL ladd

There are NO Conditional CALLS in 8051

RET Return from the subroutine

RETI Return from the Interrupt

NOP No Operation

35NAVEEN B

Example programs
1. Place any number in internal RAM location 3Ch and

increment it until the number equals 2Ah

One: CLR C One: INC 3Ch

mov A, #2Ah mov A, #2Ah

SUBB A, 3Ch OR CJNE A, 3Ch

JZ done NOP

INC 3Ch

SJMP one

Done: NOP

36NAVEEN B

2. A number A6h is placed somewhere in

external RAM between locations 0100h and

0200h. Find the address of that location and

put that address in R6(LSB) & R7(MSB).

mov 20h, #0A6h

mov DPTR, # 00FFh

Back: INC DPTR

movX a, @DPTR

CJNE a, 20h, Back

mov R7, 83h

mov R6, 82h
37NAVEEN B

3. Find the address of the first two internal RAM locations
between 20h and 60h which contain consecutive numbers.
If so set the carry flag to 1, else clear the flag.

mov 81h, #65h
mov R0, #20h

next: mov A, @R0
Inc A
mov 1Fh, A
Inc R0
Acall Done
JNC Through
mov A, @ R0
CJNE A, 1Fh, next
SETB 0D7h

Through: Sjmp through
Down : CLR C

mov A, # 61h
XRL A, R0

JNZ Back
RET

Back : CPL C
RET

38NAVEEN B

4. Assume that RAM location 40-44 have the
values 7D,EB,C5,5B & 3Ch respectively. Write a
program to find the sum of the values.

mov R0, # 40h
mov R2, # 5
CLR A
mov R7 ,A

Again: ADD A, @ R0
JNC next
INC R7

next : INC R0
DJNZ R2, Again

39NAVEEN B

5. Write a pgm to find the sum of the 10 BCD
numbers stored in RAM locations storing at 40h.

mov R0, #40h
mov R2, #0Ah
CLR A
mov R7, A

Again: ADD A, @R0
DA A
JNC Next
INC R7

Next : INC R0
DJNZ R2 , Again

40NAVEEN B

6) Write a pgm that finds the number of 1’s in a
given byte.

mov P1, # 0
mov R7, # 8
mov A, # 97h

Again: RLC A
JNC Next
INC R1

Next : DJNZ R7, Again

7) Write a pgm to add 3 to the accumulator 10 times

mov A, # 0
mov R2, # 10

Again: ADD A, # 03
DJNZ R2, Again
mov R5, A

41NAVEEN B

8. Find the sum of the values 79h,F5h & E2h, put the

sum in registers R0 & R5.

mov A, # 00

mov R5, A

ADD A, # 79h

JNC N1

INC R5

N1: ADD A, # 0F5h

JNC N2

INC R5

N2: ADD A, # 0E2h

JNC over

INC R5

over: mov R0, A

42NAVEEN B

9. A washing machine is designed for a voltage
range of 180 - 240v. If the voltage is above 240v or
below 180v, the washing machine will shut down
by turning OFF a relay connected to P1.0. Assume
that the voltage can be read at port 0 in the range
0-255v. Write a pgm to implement this operation.

. ORG 100h
Input: mov P0, # 0FFh

mov A, P0
SUBB A, # 180
JC off
mov A, P0
SUBB A, # 240
JNC off

SJMP input
Off : CLR P1.0
SJMP input

43NAVEEN B

10. Write a pgm to separate an 8bit 2’s complement

number into magnitude & sign bit.

mov P0. #00h

mov P2, #00h

mov R0, # 0FEh

mov A, R0

JB Acc.7, convert ……. Check the sign bit

mov A, R0

DBP: mov P0, A

Loop: SJMP loop

Convert: SETB P2.0

CPL A

INC A

SJMP DBP

44NAVEEN B

11. Write a pgm to find the square root of a number.

Program:

mov R3, # 36

mov R0, # 00h

mov R1, # 01h

Loop1: CLR C

mov A, R3

SUBB A, R1

mov R3, A

JNC square

mov A, R0

mov P0, A

loop: SJMP loop

Square: INC R0

mov A, R1

ADD A, # 02h

mov R1, A

SJMP loop1

Logic:

R0 R1 N=N-odd number

0 1 36-1=35

1 3 35-3=32

2 5 27

3 7 20

4 9 11

5 11 00

6 13 00-13=-13

45NAVEEN B

NAVEEN B 1

8051Instruction Set
By Dr. Naveen B

Instruction Set

Data Transfer Instructions

MOVE Destination, Source

MOV Rn, A

MOV Rn, direct

MOV DPTR, # data 16

MOVC A, @ A + DPTR

MOVC A, @ A+PC

MOVX A, @DPTR

MOVX @DPTR, A

MOVX A, @Ri ** No flags are affected

2NAVEEN B

Logical Operations
Byte level Logical operations
The operations are done in each individual bit of the source & destination

bytes.

ANL A , Rn

ORL A , @Rp

XRL A , #27h
• Destination is Accumulator or direct addressing & source may be

any addressing mode.

• Use port as a source but not as a destination

CLR A Clear Acc

CPL A Complement Acc

** No flags are affected

3NAVEEN B

Bit level Logical Operations
• It is very convenient to alter a single bit of a byte.

CPL C (Complement)

CPL bit

ANL C, bit AND direct bit to CY

ANL C, /bit

ORL C, bit

ORL C, /bit

EX:SETB 00h …Bit 0 of RAM byte 20h = 1

ANL C, /00h …C=0; bit 0 of RAM byte 20h =1

4NAVEEN B

BOOLEAN OPERATIONS
CLR C Clear CY

CLR bit Clear direct bit

SETB C Set CY

SETB bit Set direct bit (SETB P2.4)

MOV C, bit Move direct bit to CY

MOV bit, C Move CY to direct bit

MOV 7Fh, C …. Bit 7 of RAM byte 2Fh =1..Assume C=1

Note:

• CLR A --- it is for byte & only ‘A’ reg. no other

registers or addressing modes

CLR Acc.0 for individual bit in ‘A’ reg.

CLR b bits in SFRs & bit addressable area.

5NAVEEN B

Rotate and Swap Operations

RL A Rotate Acc Left : bn+1  bn

RR A Rotate Acc Right : bn  bn+1

RLC A Rotate Acc Left through Carry

RRC A Rotate Acc Right through Carry

SWAP A Exchange between the nibbles

* Only CY flag is affected in RRC A & RLC A

6NAVEEN B

Example programs:
1) Double the number in Reg. R2 & put the result in R3 & R4.

CLR C

MOV A, R2

RLC A

MOV R4, A

CLR A

RLC A

MOV R3, A

2) OR the contents of ports 1 & 2, put the result in external RAM

location 0100h

MOV A, 90h

ORL A, 0A0h

MOV DPTR, #0100h

MOVX @DPTR, A

7NAVEEN B

3) Configure P1 to read switches at P1.0 & P1.1. If

P1.0 is high, turn ON a relay connected to P2.5 by

sending a logic high o/p. If P1.0 is low, clear P2.5. If

the status of the switch at P1.1 is high, turn OFF the

relay connected to P2.6 by sending a logic low o/p. If

P1.1 is low, set P2.6 to high state.

Logic:

i/p’s at P1 o/p’s at P2

XXXXXX00 X10XXXXX

XXXXXX01 X11XXXXX

XXXXXX10 X00XXXXX

XXXXXX11 X01XXXXX

8NAVEEN B

Program:

mov p1, #0FFh

Mov p2, #00h

Mov A, p1

Anl A, #03h

Cpl Acc.1

Rl a

Rl a

Rl a

Rl a

Rl a

Mov p2, A

9NAVEEN B

4) Swap every even numbered bit of register R3 in bank 0 woth the odd

numbered bit to its left. Swap bit 0 with bit 1, bit 2 with bit 3, and so on

until bit 6 is swapped with bit 7

MOV A, R3

RL A

ANL A, #0AAh

PUSH 0E0h

MOV A, R3

RR A

ANL A, #55h

MOV R3, A

POP 0E0h

ORL 03h, A (ORL R3, A …. Not allowed)

10NAVEEN B

5. Assume that bit P2.2 is used to control an

outdoor light and bit P2.5 a light inside a

building .Show how to turn on the outside

light & turn off the inside one.

SETB C

ORL C, P2.2

mov P2.2, C

CLR C

ANL C, P2.5

mov P2.5 ,C

11NAVEEN B

6. Assume that registers A has packed BCD. Write a
pgm to convert packed BCD to two ASCII numbers
& place them in R2 & R6.

mov A, # 29h
mov R2, A
ANL A, # 0Fh
ORL A, #30h
mov R6, A
mov A, R2
ANL A, # 0F0h
RRA
RRA
RRA
RRA
ORL A, # 30h
mov R2, A

12NAVEEN B

Incrementing and decrementing

INC A ; operand may be any addressing
except Immediate

INC DPTR

DEC A :operand may be any addressing
except Immediate

There is no “DEC DPTR”
• No flags are affected

Arithmetic Instructions

13NAVEEN B

Addition and subtraction:

• ADD A, Source byte [OV, AC, CY]

• ADDC A, Source byte [OV, AC, CY]

• SUBB A, source byte [OV, AC, CY]

Subtract with borrow:

(A)  (A) - source byte -CY

‘A’ register is the destination, & source may

be any addressing mode

14NAVEEN B

Examples

Unsigned addition: This make use of the carry flag to
detect when the result of an ADD operation is a number larger
than FF h.

00 to 255d

95d = 01011111 b =5Fh

189d = 10111101 b =BDh

284d 100011100 b 11Ch

Signed addition: If unlike signed numbers are added, then it
is not possible for the result to be larger than -128 d to +127 d,
and the result will always be correct.

Ex1: -001d = 11111111 b = FF h

+027d = 00011011 b = 1Bh

+026d 100011010 b =+ 026d 11Ah

15NAVEEN B

Adding two +ve numbers, result may exceed +128d

Ex2: +100d =01100100b =64h

+050d = 00110010b 32h

150d 010010110b = -106d 096h correct result= +22d

OV=1

Ex3: +045d =00101101b =2Dh

+075d =01001011b =4Bh

+120d 001111000b =120d 078h OV=0 (result not exceeded)

The result of adding two –ve numbers together for a sum that
does not exceed the –ve limit.

Ex: - 030d = 11100010b = E2h

- 050d 11001110b = CEh

- 080d 110110000b 1B0h

OV=0

16NAVEEN B

Adding Two –ve numbers whose sum does

exceed -128d

- 070d = 10111010b = BA h

- 070d = 10111010b = BAh

- 140d =101110100b = +116d 174h

OV= 1 (correct result= -12d)

Flags Action

CY OV

0 0 none

0 1 compliment the sign

1 0 none

1 1 compliment the sign
17NAVEEN B

Unsigned subtraction:

Subtraction of a larger number from a smaller number.

015d = 00001111b = 0F0h

100d = 01100100b = 064h

- 085d =110101011b

The carry flag is set to 1 & OV=0.

2’s compliment of the result = 085d.

100d = 01100100b = 64h

015d = 00001111b = 0Fh

085d =001010101b =055h

C=0, OV=0 (Magnitude of the result is in true form).

18NAVEEN B

Signed subtraction:

When numbers of like sign are subtracted

it is impossible for the result to exceed

positive or negative magnitude limits of

+127 or -128.
+100d =01100100b(carry flag is 0 before

SUBB)=64h

sub +126d = 01111110b = 7Eh

- 026d =111100110b = 1E6h

cy=1 , OV=0

19NAVEEN B

Using two negative numbers

-061d = 11000011b (CY=0 before

SUBB) = C3h

Subb -116d = 10001100b = 8Ch

+055d 000110111b 037h

CY=0, OV=0

20NAVEEN B

An overflow is possible when subtracting

numbers of opposite sign

- 099d =10011101b(cy=0 before SUBB) =9Dh

+100d =01100100b =64h

-199d =000111001b = +057d =039h

OV= 1 , cy =0

Because the overflow flag is set to 1, the

result must be adjusted so that 2’s

compliment is 71d

21NAVEEN B

+ 087d = 01010111b(cy=0 before SUBB) = 57h

- 052d = 11001100b = cch

+139d =110001011b = -177d =18bh

OV=CY=1

The magnitude can be interpreted as +011d

The general rule is that if the overflow flag is

set to 1, then compliment the sign bit . The

overflow flag also signals that the result is

greater then - 128d or + 127d

22NAVEEN B

Multiple byte Arithmetic

+32767d

+00004d

+87654d

+78659d

ADDC A, source byte

23NAVEEN B

1) Write a pgm to add two 16 bit numbers

CLR C

mov A, # 0E7h

ADD A, # 8Dh

mov R6, A

mov A, # 3Ch

ADDC A, #3Bh

mov R7, A

24NAVEEN B

2) Write a pgm to subtract two 16 bit numbers.

CLR C

mov A, # 62h

SUBB A, # 96h

mov R7, A

mov A, # 27h

SUBB a, # 12h

mov R6 , A

25NAVEEN B

MUL AB [OV, CY]

(B : A)  A x B Always Clears CY

OV = 1 if Results > FF (not an error,

signals that the result is larger than 8-bit)

DIV AB

(A / B) Quotient in (A)

Reminder in (B)

Divide by 0  OV = 1 : Invalid result

DA A Decimal Adjust after addition
(CY flag is set if the adjusted No. exceeds 99 BCD & reset

otherwise)

26NAVEEN B

Example programs

1.Add the unsigned numbers found in the internal
RAM locations 25h,26h,&27h together & put the
result in RAM locations 31(MSB) & 30h(LSB)
Mov 31h,#00h

Mov A,25h for BCD numbers

ADD A,26h ………… DAA

Mov R0,A

Mov A,# 00h
ADDC A,31h

Mov 31h,A

Mov A,R0

ADD A,27h …………….. DAA

Mov 30h,A

Mov A,#00h

ADDC A,31h

Mov 31h,A
27NAVEEN B

2. Multiply the unsigned number in register
R3 by the unsigned number on port 2 & put
the result in external RAM locations
10h(MSB) & 11h(LSB)

Mov A,0A0h
Mov 0F0h,R3
MUL AB
mov R0, #11h
Movx @R0,A
DEC R0
Mov A,0F0H
Movx @R0,A

28NAVEEN B

3. Write a pgm to get a byte of hex data from
P1 & convert it to decimal.

mov A, # 0FFh
mov P1, A
mov A, P1
mov B, # 0Ah

DIV AB
mov R7, B
mov B, # 0Ah
DIV AB
mov R6, B
mov R5, A

29NAVEEN B

Branching Instructions

Jump & CALL instructions

• These can replace the contents of PC with a

new program address

• The difference in bytes of the present & the new

address is called the RANGE.

There are 3 ranges:

- Relative range (+127 bytes to -128 bytes)

- Absolute range (2K byte pages)

- Long range (from 0000h to FFFF h)

30NAVEEN B

Absolute range may be divided into a series of pages of
any convenient binary size such as 256bytes, 2K, 4K,
and so on….

In 8051 it has 2K page size giving a total of 32 pages.

The upper 5 bits of the PC hold the page number &
lower 11 bits hold the address with in each page.

page address (HEX)

00 0000 - 07FF

01 0800 – 0FFF

02 1000 – 17FF

. .

. .

1F F800 – FFFF

31NAVEEN B

Conditional Jumps

BIT JUMPS

• JC radd

• JNC radd

• JB bit, radd (Jump if direct Bit is set)

• JNB bit, radd (Jump if direct Bit is Notset)

• JBC bit, radd (Jump if direct Bit is set &

Clear it)

32NAVEEN B

BYTE JUMPS

• JZ radd Jump if Acc = 00 (no zero flag)

• JNZ radd

C for Compare : D for Decrement

1. CJNE Rn, # data, rel
Compare immediate data to Register : Jump if not equal

2. CJNE @Ri, # data, rel
Compare immediate data to indirect : Jump if not equal

3. CJNE A, # data, rel

4. CJNE A, direct, rel

5. DJNZ Rn, rel Dec Rn : Jump if it’s not 0

6. DJNZ direct, rel Dec direct : Jump if not 0

ALL CONDITIONAL JUMPS ARE relative JUMPS
33NAVEEN B

Unconditional Jumps
• Do not test any bit or byte

JMP @ A + DPTR Jump indirect relative to DPTR

(PC)  (A) + (DPTR) Sources are unaltered

16 bit addition

AJMP sadd Absolute Jump within the 2K space

LJMP ladd Long Jump to anywhere in the

64K memory space

SJMP radd

34NAVEEN B

CALLS AND SUBROUTINES

ACALL sadd

LCALL ladd

There are NO Conditional CALLS in 8051

RET Return from the subroutine

RETI Return from the Interrupt

NOP No Operation

35NAVEEN B

Example programs
1. Place any number in internal RAM location 3Ch and

increment it until the number equals 2Ah

One: CLR C One: INC 3Ch

mov A, #2Ah mov A, #2Ah

SUBB A, 3Ch OR CJNE A, 3Ch

JZ done NOP

INC 3Ch

SJMP one

Done: NOP

36NAVEEN B

2. A number A6h is placed somewhere in

external RAM between locations 0100h and

0200h. Find the address of that location and

put that address in R6(LSB) & R7(MSB).

mov 20h, #0A6h

mov DPTR, # 00FFh

Back: INC DPTR

movX a, @DPTR

CJNE a, 20h, Back

mov R7, 83h

mov R6, 82h
37NAVEEN B

3. Find the address of the first two internal RAM locations
between 20h and 60h which contain consecutive numbers.
If so set the carry flag to 1, else clear the flag.

mov 81h, #65h
mov R0, #20h

next: mov A, @R0
Inc A
mov 1Fh, A
Inc R0
Acall Done
JNC Through
mov A, @ R0
CJNE A, 1Fh, next
SETB 0D7h

Through: Sjmp through
Down : CLR C

mov A, # 61h
XRL A, R0

JNZ Back
RET

Back : CPL C
RET

38NAVEEN B

4. Assume that RAM location 40-44 have the
values 7D,EB,C5,5B & 3Ch respectively. Write a
program to find the sum of the values.

mov R0, # 40h
mov R2, # 5
CLR A
mov R7 ,A

Again: ADD A, @ R0
JNC next
INC R7

next : INC R0
DJNZ R2, Again

39NAVEEN B

5. Write a pgm to find the sum of the 10 BCD
numbers stored in RAM locations storing at 40h.

mov R0, #40h
mov R2, #0Ah
CLR A
mov R7, A

Again: ADD A, @R0
DA A
JNC Next
INC R7

Next : INC R0
DJNZ R2 , Again

40NAVEEN B

6) Write a pgm that finds the number of 1’s in a
given byte.

mov P1, # 0
mov R7, # 8
mov A, # 97h

Again: RLC A
JNC Next
INC R1

Next : DJNZ R7, Again

7) Write a pgm to add 3 to the accumulator 10 times

mov A, # 0
mov R2, # 10

Again: ADD A, # 03
DJNZ R2, Again
mov R5, A

41NAVEEN B

8. Find the sum of the values 79h,F5h & E2h, put the

sum in registers R0 & R5.

mov A, # 00

mov R5, A

ADD A, # 79h

JNC N1

INC R5

N1: ADD A, # 0F5h

JNC N2

INC R5

N2: ADD A, # 0E2h

JNC over

INC R5

over: mov R0, A

42NAVEEN B

9. A washing machine is designed for a voltage
range of 180 - 240v. If the voltage is above 240v or
below 180v, the washing machine will shut down
by turning OFF a relay connected to P1.0. Assume
that the voltage can be read at port 0 in the range
0-255v. Write a pgm to implement this operation.

. ORG 100h
Input: mov P0, # 0FFh

mov A, P0
SUBB A, # 180
JC off
mov A, P0
SUBB A, # 240
JNC off

SJMP input
Off : CLR P1.0
SJMP input

43NAVEEN B

10. Write a pgm to separate an 8bit 2’s complement

number into magnitude & sign bit.

mov P0. #00h

mov P2, #00h

mov R0, # 0FEh

mov A, R0

JB Acc.7, convert ……. Check the sign bit

mov A, R0

DBP: mov P0, A

Loop: SJMP loop

Convert: SETB P2.0

CPL A

INC A

SJMP DBP

44NAVEEN B

11. Write a pgm to find the square root of a number.

Program:

mov R3, # 36

mov R0, # 00h

mov R1, # 01h

Loop1: CLR C

mov A, R3

SUBB A, R1

mov R3, A

JNC square

mov A, R0

mov P0, A

loop: SJMP loop

Square: INC R0

mov A, R1

ADD A, # 02h

mov R1, A

SJMP loop1

Logic:

R0 R1 N=N-odd number

0 1 36-1=35

1 3 35-3=32

2 5 27

3 7 20

4 9 11

5 11 00

6 13 00-13=-13

45NAVEEN B

8051 Interfacing & Applications

By Dr. Naveen B

LCD Interfacing

Liquid Crystal Displays (LCDs)

 cheap and easy way to display text

 Various configurations (1 line by 20 X char up to 8 lines X 80)

 Integrated controller

 The display has two register

 data register

 Command code register

 By RS you can select register

 Data lines (DB7-DB0) used to transfer data and commands

Pin Description

Alphanumeric LCD Interfacing

 Pinout
 8 data pins D7 - D0
 RS: Data or Command

Register Select
 R/W: Read or Write
 E: Enable (Latch data)

 RS – Register Select
 RS = 0  Command Register
 RS = 1  Data Register

 R/W = 0  Write , R/W = 1  Read
 E – Enable

 Used to latch the data present on the data pins.

 D0 – D7
 Bi-directional data/command pins.
 Alphanumeric characters are sent in ASCII format.

E

R/W

RS

DB7–DB0

LCD

controller

communications

bus

Microcontrolle

r

8

LCD Module

LCD Commands

 The LCD’s internal controller can accept several
commands and modify the display accordingly.
Such as:
 Clear screen

 Return home

 Decrement/Increment cursor

 After writing to the LCD, it takes some time for it to
complete its internal operations. During this time, it
will not accept any new commands or data.
We need to insert time delay between any two commands or

data sent to LCD

LCD Addressing

LCD Timing

Command

Codes

Also use RS=0, to check the busy flag
bit to see if the LCD is ready to receive
information

Busy flag is D7

When R/W=1 & RS=0, D7=1(busy flag),
the LCD is busy taking care of internal
operations and will not accept any new
information.

When D7=0, LCD is ready to receive
new information

Interfacing LCD with 8051

LM015

8051

P1.7-P1.0 D7-D0

RW

RS

E

P3.4

P3.5

P3.3

Example

Sending commands and data to LCDs with a time delay

;calls a time delay before sending next data/command

; P1.0 – P1.7 are connected to LCD data pins D0 – D7

;P2.0 is connected to RS pin of LCD

;P2.1 is connected to R/W pin of LCD

;P2.2 is connected to E pin pf LCD

org 0h

Mov A, #38h ; init. LCD 2 lines , 5x7 matrix

ACALL COMNWRT ; call command subroutine

ACALL DELAY ; give LCD some time

Mov A , #0Eh ; display on , cursur on

ACALL COMNWRT ; call command subroutine

ACALL DELAY ; give LCD some time

Mov A, #01 ; clear LCD

ACALL COMNWRT ; call command subroutine

ACALL DELAY ; give LCD some time

Mov A, # 06h ; shift cursor right

ACALL COMNWRT ; call command subroutine

ACALL DELAY ; give LCD some time

Mov A, # 84h ;cursor at line 1 , pos. 4

ACALL COMNWRT ; call command subroutine

ACALL DELAY ; give LCD some time

Mov A ,#’N’ ; display letter N

ACALL DATAWRT ; call display subroutine

ACALL DELAY ; give LCD some time

MOv A, # ‘o’ ; display letter o

ACALL DATAWRT ; call display subroutine

AGAIN: SJMP AGAIN ; stay here

COMNWRT : ; send command to LCD

Mov P1, A ; copy reg A to port1

CLR P2.0 ; RS=9 for command

CLR P2.1 ; R/W =0 for write

SETB P2.2 ; E=1 for high pulse

ACALL DELAY ; give LCD some time

CLR P2.2 ; E=0 for H – L pulse

RET

DATAWRT: ; write data to LCD

Mov P1, a ; copy reg A to Port1

SETB P2.0 ; Rs=1 for data

CLR P2.1 ;R/w=0 for write

SETB P2.2 ; E-1 for high pulse

ACALL DELAY ; give LCD some time

CLR P2.2 ; E=0 for H – L pilse

RET

DELAY: Mov R3, #50 ; 50 or higher for fast CPU’s

HERE2 :Mov R4 , #255 ; R4=255

HERE: DJNZ R4, HERE ; stay untill R4 become 0

DJNZ R3 , HERE2

RET

END

Sending code or data to the LCD with checking busy flag

; check busy flag before sending data ,

command to LCD

; P1=data pin , P2.0=Rs , P2.1=R/W, P2.2=E pins

Mov A, #38h ; init. LCD 2 lines , 5x7 matrix

ACALL COMMAND ; issue command

Mov A , #0Eh ; LCD on , cursor on

ACALL COMMAND ; issue command

Mov A, #01 ; clear LCD command

ACALL COMMAND ; issue command

Mov A, # 06h ; shift cursor right

ACALL COMMAND ; issue command

Mov A, # 84h ;cursor at line 1 , pos. 6

ACALL COMMAND ; issue command

Mov A ,#’N’ ; display letter N

ACALL DATA_DISPLAY

MOv A, # ‘o’ ; display letter o

ACALL DATA_DISPLAY

HERE: SJMP HERE ; stay HERE

Command : ACALL READY ; Is LCD READY?

Mov P1, A ; issue command cod

CLR P2.0 ; RS=0 for command

CLR P2.1 ; R/W =0 to write to LCD

SETB P2.2 ; E=1 for H – L pulse

CLR P2.2 ; E=0 , latch in

RET

DATA _DISPLAY:

ACALL DELAY ; is LCd ready?

Mov P1, A ; issue data

SETB P2.0 ; RS =1 for data

CLR P2.1 ; R/W= 0 to write data to LCD

SETB P2.2 ; E=1 for H – L pulse

ACALL DELAY ; give LCD some time

CLR P2.2 ; E=0 , latch in

RET

READY: SETB P1.7 ; make P1.7 input port

CLR P2.0 ; Rs=0 access command reg

SETB P2.1 ; R/W=1 read command reg

;read command reg and check busy flag

BACK: CLR P2.2 ; E=0 for L – h pulse

ACALL DELAY ; give LCD some time

SETB P2.2 ; E=1 L – H pulse

JB P1.7 , BACK ; stay until busy flag =0

RET

END

Keyboard interfacing

16 keys arranged as a 4X4 matrix

 Place a 0 on R0 port (i/o Port)

 Read C port (o/p Port)

 C port is connected to VCC,

ie. port is high

 If there is a 0 bit
then the button
at the column/row
intersection has
been pressed.

Otherwise, try next row

 Repeat constantly

C1
C2

C3

C4

R1

R2

R3

R4

0123

567

DEF

9AB

C

8

4

DAC Interfacing

Two methods:

a) Binary weighted

b) R – 2R ladder……higher degree of precision

The number of data bit inputs decides the
resolution of the DAC since the number of
analog output levels is equal to 2n

n is the data inputs, common ones are 8, 10 and
12 bits

Example programs

Stepper motor interfacing

A stepper motor is a widely used device
that translates electrical pulses into
mechanical movement used for position
control.

The most common stepper motors have four
stator windings that are paired with a
center tapped common.

Conventional motor shaft runs freely, the
stepper motor shaft moves in a fixed
repeatable increment, which allows move it
to a precise position.

The step angle is the minimum degree of
rotation associated with a single step.

table 17.4

Steps per second =

(rpm x steps per revolution)/60

EXAMPLE 17.3

Sensor interfacing
 Transducers convert physical data such as

temperature, light intensity and speed to electrical
signals.

 Depends on the transducer, the o/p produced is in
the form of voltage, current, resistance or
capacitance

Temperature sensors
Temperature is converted into electrical signals using

a transducer called thermistor.

A thermistor responds to temperature change by
changing resistance

TABLE: 13.8

Response is not linear
Complexity associated with writing a

software for nonlinear devices.
This leads to a linear sensors like LM34 &

LM35

Converting the common transducers o/p like
voltage, current, capacitance, resistance to
voltage in order to send i/p to an A- to D
converter called Signal Conditioning.

Figure 13.21

Example 13.1

ADC interfacing

In this physical world everything is analog.

A/D converters translate analog signal to
digital

so that MC can read & process them.

Step size is the smallest change that can
be discerned by an ADC

Conversion time is the time it takes the
ADC to convert the analog i/p to a digital
number.

8051

Interrupts
BY Dr. Naveen B

Definition of ‘Interrupt’

Event that disrupts the
normal execution of a program
and causes the execution of
special instructions

Interrupts VS polling

A single MC can serve several devices. There

are two ways to do it: a) polling

b) Interrupt

Used in the previous chapter

JNB TF, target -> polling method (wait until the

timer rolls over, & we could not do anything

else)

Steps in executing an interrupt

• Finish current instruction and saves the PC on

stack.

• Jumps to a fixed location in memory depend on

type of interrupt

• Starts to execute the interrupt service routine

until RETI (return from interrupt)

• Upon executing the RETI the microcontroller

returns to the place where it was interrupted.

Get pop PC from stack

Interrupt Overheads

Interrupt arrives

Complete current instruction

Save essential register information

Vector to ISR

Save additional register information

Execute body of ISR

Restore other register information

Return from interrupt and restore essential

registers

Resume task

Interrupt

Latency

Interrupt

Termination

Interrupt Sources

Original 8051 has 6 sources of
interrupts
– Reset

– Timer 0 overflow

– Timer 1 overflow

– External Interrupt 0

– External Interrupt 1

– Serial Port events (buffer full, buffer empty,
etc)

Interrupt Vectors

Each interrupt has a specific place in code
memory where program execution (interrupt
service routine) begins.

External Interrupt 0: 0003h

Timer 0 overflow: 000Bh

External Interrupt 1: 0013h

Timer 1 overflow: 001Bh

Serial : 0023h

Note: that there are

only 8 memory

locations between

vectors.

SJMP main

ORG 03H

ljmp int0sr

ORG 0BH

ljmp t0sr

ORG 13H

ljmp int1sr

ORG 1BH

ljmp t1sr

ORG 23H

ljmp serialsr

ORG 30H

main: …

END

ISRs and Main Program in 8051

Enabling and disabling an interrupt

by bit operation
Recommended in the middle of program

SETB EA ;Enable All

SETB ET0 ;Enable Timer0 ovrf

SETB ET1 ;Enable Timer1 ovrf

SETB EX0 ;Enable INT0

SETB EX1 ;Enable INT1

SETB ES ;Enable Serial port

by mov instruction
Recommended in the first of program

MOV IE, #10010110B

SETB IE.7

SETB IE.1

SETB IE.3

SETB IE.0

SETB IE.2

SETB IE.4

Programming timer interrupts

JNB TF , target --polling method

In interrupt method, if the timer interrupt in the IE
register is enabled, whenever the timer rolls
over, TF is raised , & the microcontroller is
interrupted in whatever it is doing , & jump to
ISR.

Place all the initialization codes in memory
starting at 30h, because to avoid using the
memory space allocated to the interrupt vector
table.

Example
• A 10khz square wave with 50% duty cycle

ORG 0 ;Reset entry point

LJMP MAIN ;Jump above interrupt

ORG 000BH ;Timer 0 interrupt vector

T0ISR:CPL P1.0 ;Toggle port bit

RETI ;Return from ISR to Main program

ORG 0030H ;Main Program entry point

MAIN:MOV TMOD,#02H ;Timer 0, mode 2

MOV TH0,#50 ;50 us delay

SETB TR0 ;Start timer

MOV IE,#82H ;Enable timer 0 interrupt

SJMP $;Do nothing just wait

END

Examples
Write a program that continuously gets 8bit data from P0 sends it to P1 while

simultaneously creating a square wave of 200µs period on pin p2.1.Use
timer 0 to create the square wave.

Org 0000

LJMP MAIN

Org 000BH ;Timer 0 interrupt vector table

CPL P2.1

RETI

Org 0030h

MAIN: Mov TMOD , #02h

Mov P0, #0FFh

Mov TH0, # -92

Mov IE ,#82h

SETB TR0

BACK: Mov A, P0

Mov P1, A

SJMP BACK

END

Write a program to generate a square wave of 50Hz frequency on pinP1.2

Org 0

LJMP main

Org 000Bh

CPL P1.2

Mov TL0, #00

Mov TH0, # 0DCh

RETI

Org 30h

main: Mov TMOD , #00000001B

Mov TL0 ,#00

Mov TH0 ,# 0DCh

Mov IE, # 82h

SETB TR0

Here: SJMP Here

END

Programming external hardware interrupts

• The two external hardware interrupts are ---

INT0(P3.2) and INT1(P3.3)

• Two types of activation

-> level triggered (default mode)

-> edge triggered

In the level triggered mode , INT0 & INT1 pins are
normally high & if a low level signal is applied to
them , it triggers the interrupt.

TCON register selects edge trigger or level
trigger, bit 0 for IT0 & bit 2 for IT1

TCON.0=1 -edge triggered & 0 for level
triggered ,by default it is a level triggered.

External interrupt type control

• By low nibble of Timer control register TCON

• IE0 (IE1): External interrupt 0(1) edge flag.

– set by CPU when external interrupt edge (H-to-L) is detected.

– Does not affected by H-to-L while ISR is executed (no int on int)

– Cleared by CPU when RETI executed.

– does not latch low-level triggered interrupt

• IT0 (IT1): interrupt 0 (1) type control bit.

– Set/cleared by software

– IT=1 edge trigger

– IT=0 low-level trigger

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

Timer 1 Timer0 for Interrupt

(MSB) (LSB)

External Interrupts

IE0 (TCON.3)

0003

INT0

(Pin 3.2) 0

1
IT0

Edge-triggered

Level-triggered (default)

IE1 (TCON.3)

INT1

(Pin 3.3) 0

1
IT1

Edge-triggered

Level-triggered (default)

0013

Example of external interrupt

Interrupt Priorities
• What if two interrupt sources interrupt at the same

time?

• The interrupt with the highest PRIORITY gets serviced

first.

• All interrupts have a power on default priority order.

1. External interrupt 0 (INT0)

2. Timer interrupt0 (TF0)

3. External interrupt 1 (INT1)

4. Timer interrupt1 (TF1)

5. Serial communication (RI+TI)

• Priority can also be set to “high” or “low” by IP reg.

Interrupt Priorities (IP) Register

IP.7: reserved

IP.6: reserved

IP.5: timer 2 interrupt priority bit(8052 only)

IP.4: serial port interrupt priority bit

IP.3: timer 1 interrupt priority bit

IP.2: external interrupt 1 priority bit

IP.1: timer 0 interrupt priority bit

IP.0: external interrupt 0 priority bit

--- PX0PT0PX1PT1PSPT2---

Interrupt Priorities Example

• MOV IP , #00000100B or SETB IP.2 gives

priority order
1. Int1

2. Int0

3. Timer0

4. Timer1

5. Serial

• MOV IP , #00001100B gives priority order

1. Int1

2. Timer1

3. Int0

4. Timer0

5. Serial

--- PX0PT0PX1PT1PSPT2---

Interrupt inside an interrupt
--- PX0PT0PX1PT1PSPT2---

• A high-priority interrupt can interrupt a low-

priority interrupt

• All interrupt are latched internally

• Low-priority interrupt wait until 8051 has

finished servicing the high-priority interrupt

Assume that the INTI pin is connected to a switch that is normally
high. Whenever it goes low, it should turn on LED. The LED is
connected to P1.3 & is normally off. When it is turned on it should
stay on for a fraction of a second. As long as the switch is
pressed low, the LED should stay on.

Org 0000h

LJMP main

Org 0013h

SETB P1.3 ; INTI ISR

Mov R3, #255 ; load counter

Back: DJNZ R3, Back

CLR P1.3

RETI

Org 30h

Main: Mov IE ,# 10000100B

Here: SJMP Here

END

Upon reset the 8051 makes INTO & INT1 low level triggered
interrupts. To make them edge triggered interrupts, we must
program the bits of the TCON register.

Assuming that pin 3.3 (INTI) is connected to a pulse generator, write
a program in which the falling edge of the pulse will send a high
to P1.3, which is connected to LED.

Org 0000h

LJMP main

Org oo13h

SETB P1.3

Mov R3 ,#255

Back: DJNZ R3, Back

CLR p1.3

RET

Org 30h

Main: SETB TCON .2

Mov IE, #10000100B

Here: SJMP , Here

END

Difference between RET and RETI

Both perform the same actions of popping off
the top two bytes of the stack Into the
program counter and making the 8051 return
to where it left off, however RETI also
performs clearing the interrupt in service flag,
indicating that the servicing of the interrupt is
over & the 8051 now can accept a new
interrupt on that pin.

If RET is used instead of RETI , it simply block
any new interrupt on that pin, It indicates that
the interrupt is still being serviced.

Programming the serial

communication interrupt

1.Write a program in which the 8051 reads data from P1 and writes it
to P2 continuously while giving a copy of Po to the serial COM
port to be transferred serially. Assume that XTAL=11.0592MHz.
Set the baud rate at 9600.

org 0

LJMP MAIN

org 23h

LJMP SERIAL ; jump to serial interrupt ISR

Org 30h

MAIN: Mov P1, #0FFh ; make P1 an input port

Mov TMOD , #20h ; timer 1, mode 2(auto-reload)

Mov TH1 , #0FDh ; 9600 baud rate

Mov SCON ,# 50h ; 8bit, 1 stop , REN enabled

Mov IE , #10010000B ; enabled serial interrupt

SETB TR1 ; start timer 1

BACK: Mov A , P1 ; read data from port1

Mov SBUF ,A ; Give a copy to SBUF

Mov P2, A ; send it to P2

SJMP BACK ; stay in loop indefinitely

Org 100h

SERIAL: JB TI, TRANS ; jump if T1 is high

Mov A , SBUF ; otherwise due to receive

CLR RI ; clear RI since CPU does not

RETI ; return from ISR

TRANS: CLR TI ; clear TI since CPU does not

RETI ; return from ISR

END

2. Write a program in which the 8051 gates data from P1
and sends it to P2 continuously while incoming data
from the serial port is send to P0 .Assume that XTAL
=11.0592MHz. Set the baud rate at 9600.

Org 0

LJMP MAIN

Org 23h

LJMP SERIAL ; jump to serial ISR

Org 30h

MAIN : Mov P1 , #0FFh ; make P1 an input port

Mov TMOD , #20h ; timer 1, mode 2(auto-reload)

Mov TH1. #0FDh ; 9600 baud rate

Mov SCON , #50h ; 8-bit , 1 stop, REN enabled

Mov IE, #10010000B ; enable serial interrupt

SETB TR1 ; start timer 1

BACK: Mov A, P1 ; read data from port 1

Mov P2, A ; send it to P2

SJMP BACK ; stay in loop indefinitely

Org 100h

SERIAL: JB T1, TRANS ; jump if T1 is high

Mov A, SBUF ; otherwise due to receive

Mov P0 , A ; send incoming data to P0

CLR RI ; clear RI since CPU doesn’t

RETI ; return from ISR

TRANS: CLR TI ; clear TI since CPU doesn’t

RETI ; return from ISR

END

3. Write a program using interrupts to do the

following :

(a) Receive data serially and send it to p0,

(b) Have port P1 read and transmitted serially,

and a copy given to P2,

(c) Make Timer 0 generate a square wave of

5KHz frequency on P0.1,

Assume that XTAL =11.0592MHz .Set the baud

rate at 4800

Org 0

LJMP MAIN

Org 000Bh ; ISR for timer 0

CPL P0.1 ; toggle P0.1

RETI ; return from ISR

Org 23h

LJMP SERIAL ; jump to serial int.ISR

Org 30h

MAIN : Mov P1, #0FFh ; make P1 an input port

Mov TMOD , #22h ; timer 0 & 1, mode 2, auto_reload

Mov TH1, #0F6h ; 4800 baud rate

Mov SCON , #50h ; 8-bit , 1 stop , REN enabled

Mov TH0 , # -92h ; for 5 KHz wave

Mov IE , # 10010010 B ; enable serial , timer 0 int

SETB TR1 ; start timer 1

TR0 ; START TIMER 0

BACK: Mov A , P1 ; read data from port 1

Mov SBUF, A ; give a copy to SBUF

Mov P2 , A ; write it to P2

SJMP BACK

org 100h

SERIAL : JB TI , TRANS

Mov A, SBUF

Mov P0, A ; send serial data to P0

CLR RI ; clear RI since CPU does not

RETI ; return from ISR

TRANS: CLR TI ; clear TI since CPU does not

RETI ; return from ISR

END

Serial example(2)
An example for serial port interrupt

ORG 0000H

LJMP MAIN

;jump to serial ISR

ORG 23H

LJMP ISR

;main program

ORG 30H

;1-initializtion

MAIN: MOV P0,#0FFH

MOV TMOD,#20H

MOV TH1,#-13

MOV SCON,#50H

MOV IE,#90H

;2-begin

SETB TR1

AGAIN: MOV A,P0

MOV P1,A

SJMP AGAIN

;ISR for reading from serial port

ISR: PUSH ACC

JB TI,TRANSM

MOV A,SBUF

MOV P2,A

CLR RI

SJMP ISREND

TRANSM: CLR TI

ISREND: POP ACC

RETI

END

Serial example(3)

an example for serial port interrupt

;for transmitting

ORG 0000H

LJMP MAIN

;jump to serial ISR

ORG 23H

LJMP ISR

;main program

ORG 30H

;initializtion

MAIN: MOV P0,#0FFH

MOV TMOD,#20H

MOV TH1,#-13

MOV SCON,#50H

MOV IE,#90H

;2-begin

SETB TR1

AGAIN: SJMP AGAIN

;ISR for receive from serial to p0

;transmitting to serial from p1

ISR: JB TI,TRANSM

MOV A,SBUF

mov P0,A

CLR RI

RETI

TRANSM: MOV A,P1

MOV SBUF,A

CLR TI

RETI

END

Serial example(4)
ORG 0000

;Initialize serial port & timer

INIT: MOV SCON,#52H ;Serial port mode 1

MOV TMOD,#20H ;Timer 1, mode 2

MOV TH1,#-13 ;Reload count for 2400 baud

SETB TR1 ;Start timer 1

;move character 'B' to accumulator for transmitting

MOV A,#'B'

;Transmit characters by serial port

OUTCHR: MOV C,P ;Put parity bit in C flag

CPL C ;Change to odd parity

MOV ACC.7,C ;Add to character code

END

AGAIN:JNB TI,AGAIN ;Buffer empty? no:check again

CLR TI ;Yes:clear falg and

MOV SBUF,A ;send character

CLR ACC.7 ;Strip off parity bit

JMP $

MICROCONTROLLER AND

APPLICATIONS (18EC 42)

Prepared by

Dr. Naveen B

Saturday, May 1, 2021 NAVEEN B

Saturday, May 1, 2021

CHAPTER 1

Microcontroller

NAVEEN B

Saturday, May 1, 2021

• Introduction (Historical Background)

• Microprocessors & Microcontrollers

• A Microcontrollers Survey

• Development Systems for Microcontrollers

• RISC & CISC CPU Architectures

• Harvard & Von-Neumann CPU architecture

NAVEEN B

Saturday, May 1, 2021

Historical Background

• Blaise Pascal invented a calculator in 1642 that was
constructed of gears and wheels. Each gear
contained 10 teeth.

• Charles Babbage began to create what he called his
Analytical Engine. This machine was to generate
navigation tables for the Royal Navy.

• The engine stored 1000 20-digit decimal numbers and
variable program.

NAVEEN B

Saturday, May 1, 2021

The development of transistor in 1948 at Bell Labs. In 1958

invent the integrated circuit by Jack Kilby of Texas Instruments.

The IC led to the development of digital integrated circuits

(RTL, or resistor-to-transistor logic) in the 1960s and the first

microprocessor at Intel Corporation in 1971.

Marcian E. Hoff, developed the 4004 microprocessor.

NAVEEN B

Saturday, May 1, 2021

• Intel introduced microprocessors in 1971

 4-bit microprocessors

 4004

 4040
It addressed a mere 4096 4-bit wide memory locations.

The problems with 4004 are :

Speed, width, Memory size

 8-bit microprocessors
» 8008

» 8080

» 8085

• In 1973, Intel corporation released the 8008, an extended 8-bit version

of the 4040 microprocessor.

• The memory size are 16K bytes

• The instructions are 48

NAVEEN B

• Intel introduced the 8080 microprocessor in 1973. The first modern 8-bit

microprocessors.

• Motorola Corporation introduced its MC6800 microprocessor .

8080 address memory with 64K bytes than the 8008 with 16K bytes.

In 1977, Intel corporation introduced an update version of the 8080─the
8085. the last 8-bit microprocessor developed by Intel. The main
advantages of the 8085 were its internal clock generator, internal
system controller, and higher clock frequency.

 16-bit processors
» 8086 introduced in 1978

– 20-bit address bus, 16-bit data bus

» 8088 is a less expensive version

– Uses 8-bit data bus

» Can address up to 4 segments of 64 KB

» Referred to as the real mode
Saturday, May 1, 2021 NAVEEN B

Saturday, May 1, 2021

8086 and 8088 addressed 1M bytes of memory.

A small 4- or 6-byte instruction cache or queue that

prefetched a few instructions before they were executed.

NAVEEN B

Saturday, May 1, 2021

 80186

» A faster version of 8086

» 16-bit data bus and 20-bit address bus

» Improved instruction set

 80286 was introduced in 1982

» 24-bit address bus

» 16 MB address space

» Enhanced with memory protection capabilities

» Introduced protected mode

– Segmentation in protected mode is different from the real

mode

NAVEEN B

Saturday, May 1, 2021

 80386 was introduced in 1985

» First 32-bit processor

» 32-bit data bus and 32-bit address bus

» 4 GB address space

» Segmentation can be turned off (flat model)

» Introduced paging

 80486 was introduced in 1989

» Improved version of 386

» Combined coprocessor functions for performing floating-point

arithmetic

» Added parallel execution capability to instruction decode and

execution units

– Achieves scalar execution of 1 instruction/clock

» Later versions introduced energy savings for laptops

NAVEEN B

Saturday, May 1, 2021

 Pentium (80586) was introduced in 1993

» Similar to 486 but with 64-bit data bus

» Wider internal data paths

– 128- and 256-bit wide

» Added second execution pipeline

– Superscalar performance

– Two instructions/clock

» Doubled on-chip L1 cache

– 8 KB data

– 8 KB instruction

» Added branch prediction

NAVEEN B

Saturday, May 1, 2021

 Pentium Pro was introduced in 1995

» Three-way superscalar

– 3 instructions/clock

» 36-bit address bus

– 64 GB address space

» Introduced dynamic execution

– Out-of-order execution

– Speculative execution

» In addition to the L1 cache

– Has 256 KB L2 cache

NAVEEN B

Saturday, May 1, 2021

 Pentium II was introduced in 1997

» Introduced multimedia (MMX) instructions

» Doubled on-chip L1 cache

– 16 KB data

– 16 KB instruction

» Introduced comprehensive power management features

– Sleep

– Deep sleep

» In addition to the L1 cache

– Has 256 KB L2 cache

 Pentium III, Pentium IV,…

NAVEEN B

Saturday, May 1, 2021

 Itanium processor

» RISC design

– Previous designs were CISC

» 64-bit processor

» Uses 64-bit address bus

» 128-bit data bus

» Introduced several advanced features

– Speculative execution

– Predication to eliminate branches

– Branch prediction

NAVEEN B

Saturday, May 1, 2021

Pentium Registers

• Four 32-bit registers can be used as
 Four 32-bit register (EAX, EBX, ECX, EDX)

 Four 16-bit register (AX, BX, CX, DX)

 Eight 8-bit register (AH, AL, BH, BL, CH, CL, DH, DL)

• Some registers have special use
 ECX for count in loop instructions

NAVEEN B

Saturday, May 1, 2021

Pentium Registers (cont’d)

• Two index registers

 16- or 32-bit registers

 Used in string instructions

» Source (SI) and

destination (DI)

 Can be used as general-

purpose data registers

• Two pointer registers

 16- or 32-bit registers

 Used exclusively to

maintain the stack

NAVEEN B

Saturday, May 1, 2021

Pentium Registers (cont’d)

NAVEEN B

Saturday, May 1, 2021

Protected Mode Architecture

• Pentium supports two modes

 Protected mode

» 32-bit mode

» Supports segmentation and paging

 Real mode

» Uses 16-bit addresses

» Runs 8086 programs

» Pentium acts as a faster 8086

NAVEEN B

Saturday, May 1, 2021

Intel and Motorola microprocessors

NAVEEN B

Saturday, May 1, 2021 NAVEEN B

Applications
Home

 Appliances

 Intercom

 Telephones

 Security systems

 Garage door openers

 Answering Machine

 Fax machine

 Exercise Equipments

 Washing Machine

 Home Computers

 TVs

 Cable TV Tuner

 VCR

 Camcorder

 Remote Controls

Automobile
 Engine Control

 Air Bag

 Transmission Control

 Automobile Instrumentation

 Entertainment

 Keyless Entry

Office

 Laser Printer

 Copier

 Color Printer

 Paging

Saturday, May 1, 2021

Introduction

CPU

General-

Purpose

Micro-

processor

RAM ROM
I/O

Port
Timer

Serial COM

Port

Data Bus

Address Bus

General-Purpose Microprocessor System

• CPU for Computers

• No RAM, ROM, I/O on CPU chip itself

• Example：Intel’s x86, Motorola’s 680x0

Many chips on mother’s board

General-purpose microprocessor

NAVEEN B

Saturday, May 1, 2021

RAM ROM

I/O

Port
Timer

Serial

COM

Port Microcontroller

CPU

• A smaller computer

• On-chip RAM, ROM, I/O ports...

• Example：Motorola’s 6811, Intel’s 8051, Zilog’s Z8 and PIC 16X

A single chip

Microcontroller :

NAVEEN B

Saturday, May 1, 2021

Microprocessor

• CPU is stand-alone, RAM, ROM,

I/O, timer are separate

• designer can decide on the amount of

ROM, RAM and I/O ports.

• Requires more hardware

• expansive

• general-purpose

• Less multifunctional pins

• 1 or 2 bit handling Inst.

• Single memory map for Data & Code

• Many instructions to move data

between memory & CPU

Microcontroller

• CPU, RAM, ROM, I/O and timer are

all on a single chip

• fix amount of on-chip ROM, RAM,

I/O ports

• Requires less hardware

• for applications in which cost, power

and space are critical

• single-purpose

• More multifunctional pins

• More bit handling inst.

• separate memory map for Data &

Code

• 1 or 2 instructions

Microprocessor vs. Microcontroller

NAVEEN B

Saturday, May 1, 2021

• Embedded system means the processor is embedded into that

application.

• An embedded product uses a microprocessor or microcontroller to

do one task only.

• In an embedded system, there is only one application software that

is typically burned into ROM.

• Example：printer, keyboard, video game player

Embedded System

NAVEEN B

Saturday, May 1, 2021

1. meeting the computing needs of the task efficiently and cost

effectively

• speed, the amount of ROM and RAM, the number of I/O ports

and timers, size, packaging, power consumption

• easy to upgrade

• cost per unit

2. availability of software development tools

• assemblers, debuggers, C compilers, emulator, simulator,

technical support

3. wide availability and reliable sources of the microcontrollers.

Three criteria in Choosing a Microcontroller

NAVEEN B

Saturday, May 1, 2021

Block Diagram

CPU

On-chip

RAM

On-chip

ROM for

program

code

4 I/O Ports

Timer 0

Serial

PortOSC

Interrupt

Control

External interrupts

Timer 1

Timer/Counter

Bus

Control

TxD RxDP0 P1 P2 P3

Address/Data

Counter

Inputs

NAVEEN B

Feature 8051 8052 8031

ROM (program space in bytes) 4K 8K 0K

RAM (bytes) 128 256 128

Timers 2 3 2

I/O pins 32 32 32

Serial port 1 1 1

Interrupt sources 6 8 6

Comparison of the 8051 Family Members

Saturday, May 1, 2021 NAVEEN B

A MICROCONTROLLER SURVAY

Saturday, May 1, 2021 NAVEEN B

Data Bits MicroController

IC

RAM / ROM

4 bit MicroController MCS40 (4004) 32 byte RAM, 512 byteROM

8 bit MicroController 8051 (MCS 51) 128 byte RAM, 4 K ROM

16 bit MicroController 80C196 (MCS96

Family)

256 byte RAM, 8 K ROM

32 bit MicroController 80960 (Floating point

Unit, 512

Byte Instruction

Cache)

DEVELOPMENT SYSTEMS FOR

MICROCONTROLLERS

The package of hardware & software will allow the

MC to be programmed & connected to the

application is called development system.

• Trained personnel must be available

• A device capable of programming EPROMs must

be available

• Software is needed along with PC to host it

Saturday, May 1, 2021 NAVEEN B

RISC & CISC CPU ARCHITECTURES

• A CISC processor has most of the following properties:

 Richer instruction set, some simple, some very complex

 Instructions generally take more than 1 clock to execute

 Instructions of a variable size

 Instructions interface with memory in multiple mechanisms

with complex addressing modes

 Microcode control

 No pipelining

• Work well with simpler compiler

• Segmented memory model

• Few registers

• Crappy floating point performance

• Upward compatibility within a family

Saturday, May 1, 2021 NAVEEN B

• A RISC processor has most of the following properties:

 Simple primitive instructions and addressing modes

 Instructions execute in one clock cycle

 Uniformed length instructions and fixed instruction format

 Instructions interface with memory via fixed mechanisms

(load/store)

 Hardwired control

 Pipelining

 Instruction set is orthogonal (little overlapping of instruction

functionality)

 Complexity pushed to the compiler

 Superscalar and out-of-order execution

 Large number of registers

 Fast floating point performance

Saturday, May 1, 2021 NAVEEN B

Comparison between RISC & CISC

• Simple instructions taking one cycle

• Few instructions only

• Simple addressing modes

• Few addressing modes & most

instructions have register addressing

mode

• Very few instructions refer memory

• Instructions are executed by hardware

• Fixed instruction format

• Highly pipelined

• Complexity is in the compiler

• More registers

• Complex instructions taking many cycles

• Many instructions

• Complex addressing modes

• Many addressing modes

• Most of the instructions may refer

memory

• Executed by micro program

• Variable instruction format

• Not pipelined

• Complexity is in the micro program

• Few registers

Saturday, May 1, 2021 NAVEEN B

Harvard Vs Von-Neumann
There are two ways in which the computer memory used

for storing instructions may be organized.

Harvard

1. Separate blocks for Program & Data Memory

8051 has Harvard Architecture which uses the same

address in different memories for code and data

2. Data bus & Program bus usually of different size

Data

Memory
Program

Memory
CPU

Saturday, May 1, 2021 NAVEEN B

Von Neumann

Program & Data Memory in the same block

Program &

Data

Memory

CPU

Saturday, May 1, 2021 NAVEEN B

• In a von Neumann architecture, the instruction has first to be fetched, using the program

counter; then it can be executed. Since when the instruction is executed, it may also read or

write data, you often cannot load one instruction and execute another at the same time. So

the basic sequence in a von-Neuman architecture system is

• fetch

execute

fetch

execute

• This means that such a system may be slower. On the other hand, it has great advantages of

flexibility, and the efficient use of memory caches can do a great deal to mitigate the

apparent slowness of the architecture.

• For example, what happens when you load up a game from disk into your computer? The

program is stored as data, for example on a disc. You have to read that data, and store it in

the memory of your computer. When you have done that, you can treat it as a program, (i.e.

as a set of instructions) and run (execute) it. With a von Neumann architecture, since you

have only one memory system, there is no problem; but with a Harvard architecture, you

cannot do it - you cannot write data to the program memory - a special system is required to

load the program into program memory.

Saturday, May 1, 2021 NAVEEN B

• The Harvard architecture also prevents you reading data from the program

memory. For example, you may wish to include in your program tables of

data, which can be used by the program; for example, messages to be

displayed on the screen, or some kind of "look-up table". In a von Neumann

architecture there is no problem; you can just store the table along with your

program, and read it when you want to, because an instruction can read data

from any address; in a Harvard architecture, data stored in the program

memory cannot be read as data in the data memory. There are ways to get

round this problem.

• A von Neumann architecture is used for most computers; it allows the storing

and running of different programs. A Harvard architecture is more appropriate

for a microcontroller; in use, it will only ever run one program which will be

stored in the ROM in its program memory. Moreover, the extra speed without

the complexity of a sophisticated cache controller will be useful in some

circumstances.

Saturday, May 1, 2021 NAVEEN B

8051 Serial Communication

By Dr. Naveen B

Advantages of serial communication over

parallel communication

- Single Data line is used

- Cheaper

- Communicate over a longer distance

Modem is used to convert data from 0’s & 1’s to

audio signals and vice-versa

Parallel in serial out & serial in parallel out registers

are used.

8051 and PC
• The 8051 module connects to PC by using RS232.

• RS232 is a protocol which supports half-duplex,

synchronous/asynchronous, serial communication.

We discuss these terms in following sections.

PC 8051

COM 1 port

RS232

MAX232
UART

Simplex vs. Duplex

Transmission
• Simplex transmission: the data can sent in

one direction.

– Example: the computer only sends data to the

printer.

• Duplex transmission: the data can be

transmitted and receive

Transmitter Receiver

Transmitter

ReceiverReceiver

Transmitter

Half vs. Full Duplex

• Half duplex: if the data is transmitted one

way at a time.

• Full duplex: if the data can go both ways at

the same time.

– Two wire conductors for the data lines.

Transmitter

Receiver

Receiver

Transmitter

Transmitter

Receiver

Receiver

Transmitter

Serial vs Parallel Data Transfer

Sender Receiver Sender Receiver

Serial Transfer Parallel Transfer

D0-D7D0

Other control lines

Other control lines

Serial Communication

• How to transfer data?

– Sender:

• The byte of data must be converted to serial bits

using a parallel-in-serial-out shift register.

• The bit is transmitted over a single data line.

– Receiver

• The receiver must be a serial-in-parallel-out shift

register to receive the serial data and pack them

into a byte.

11101000001011

‘A’

register
8-bit

character

register
8 1

parallel-in

serial-out

serial-in

parallel-out

Asynchronous vs. Synchronous

• Serial communication uses two methods:

– In synchronous communication, data is sent

in blocks of bytes.

– In asynchronous communication, data is sent

in bytes.

byte byte byte byte 01011111

preamble

01010101

sender receiver

byte

sender receiver
start bitstop bit

bytebyte

UART & USART

• It is possible to write software to use both

methods, but the programs can be tedious

and long.

• Special IC chips are made for serial

communication:
– USART (universal synchronous-asynchronous

receiver-transmitter)

– UART (universal asynchronous receiver-transmitter)

• The 8051 chip has a built-in UART.
– Half-duplex

– Asynchronous mode only

Framing (1/3)

• How to detect that a character is sent via the line

in the asynchronous mode?

– Answer: Data framing!

• Each character is placed in between start and

stop bits. This is called framing.

stop

bit
start

bit
mark0 0 0 0 0 01 1

D7 D0goes out last goes out first

Time (D0 first)

mark

Framing (2/3)

• The LSB is sent out first.

• The start bit is 0 (low) and always one bit.

• The stop bits is 1 (high).

• The stop bit can be one (if 8 bits used in

ASCII) or two bits (if 7 bits used in ASCII).

– In asynchronous serial communication,

peripheral chips and modems can be

programmed for data that is 7 or 8 bits.

• When there is no transfer, the signal is 1

(high), which is referred to as mark.

Framing (3/3)

• We have a total of 10 bits for each character:

– 8-bits for the ASCII code

– 2-bits for the start and stop bits

• In some systems in order to maintain data

integrity, the parity bit is included in the data

frame.

– In an odd-parity bit system the total number of bits,

including the parity bit, is odd.

– UART chips allow programming of the parity bit for

odd-, even-, and no-parity options.

Handshaking signals to ensure fast & reliable

data transmission between Two devices

• DTR (Data Terminal Ready): when the terminal is turned
ON, after going through a self test, it sends out a signal
DTR to indicate that it is ready for communication. This is
an i/p pin from DTE & an i/p to the modem.

• DSR (Data Set Ready): when DCE (modem) is turned on
& has gone through the self test, it asserts DSR to indicate
that it is ready to communicate .It is an o/p from modem &
i/p to the pc (DTE).

• RTS (Request To Send): When the DTE device has a byte
to transmit, it asserts RTS to signal the modem that it has

a byte of data to transmit

CTS (clear to send): in response to RTS, when the

modem has room for storing the data it is to

receive, it sends out signal CTS to the DTE to

indicate that it can receive the data now.

DCD (data carrier detect): the modem asserts signal

DCD to inform the DTE that a valid carrier has

been detected & that contact between it & the other

modem is established

RI (ring detector): an o/p from the modem & an i/p to

PC indicates that the telephone is ringing. It gives

on & OFF in synchronization with the ringing sound

How to communicate 8051 to PC

• Connect TXD to RXD and RXD to TXD from pc to 8051

• Use max232 to transform signal from TTL level to RS232

level

• The baud rate of the 8051 must matched to the baud rate of the pc

• PC standard baud rates

– 2400-4800-9600-14400-19200-28800-33600-57600

• Serial mode 1 is used

• Timer 1 is used

• The 8051 UART divides the machine cycle frequency by 32

• Machine cycle is 1/12 XTAL frequency

• We use timer1 in mode 2 (auto reload)

MAX 232

TxD and RxD pins in the 8051

• In 8051, the data is received from or

transmitted to

– RxD: received data (Pin 10, P3.0)

– TxD: transmitted data (Pin 11, P3.1)

• TxD and RxD of the 8051 are TTL

compatible.

• The 8051 requires a line driver to make

them RS232 compatible.

– One such line driver is the MAX232 chip.

PC Baud Rates

• PC supports several

baud rates.

• HyperTerminal

supports baud rates

much higher than the

ones list in the Table.

110 bps

150

300

600

1200

2400

4800

9600 (default)

19200

Note: Baud rates supported by

486/Pentium IBM PC BIOS.

Baud Rates in the 8051 (1/2)

• The 8051 transfers and receives data serially at

many different baud rates by using UART.

• UART divides the machine cycle frequency by

32 and sends it to Timer 1 to set the baud rate.

• Signal change for each roll over of timer 1

XTAL

oscillator
÷ 12

÷ 32

By UART

Machine cycle

frequency
28800 Hz

To timer 1

To set the

Baud rate

921.6 kHz

11.0592 MHz

Timer 1

Baud Rates in the 8051 (2/2)

• Timer 1, mode 2 (8-bit, auto-reload)

• Define TH1 to set the baud rate.

– XTAL = 11.0592 MHz

– The system frequency = 11.0592 MHz / 12 =

921.6 kHz

– Timer 1 has 921.6 kHz/ 32 = 28,800 Hz as

source.

– TH1=FDH means that UART sends a bit

every 3 timer source.

– Baud rate = 28,800/3= 9,600 Hz

Example
With XTAL = 11.0592 MHz, find the TH1 value needed to have

the following baud rates. (a) 9600 (b) 2400 (c) 1200

Solution:

With XTAL = 11.0592 MHz, we have:

The frequency of system clock = 11.0592 MHz / 12 = 921.6kHz

The frequency sent to timer 1 = 921.6 kHz/ 32 = 28,800 Hz

(a) 28,800 / 3 = 9600 where -3 =FD (hex) is loaded ontoTH1

(b)28,800 / 12 = 2400 where -12 = F4 (hex) is loaded intoTH1

(c)28,800 / 24 = 1200 where -24 = E8 (hex) is loaded intoTH1

Registers Used in Serial

Transfer Circuit
• SBUF (Serial data buffer)

• SCON (Serial control register)

• PCON (Power control register)

SBUF Register

• Serial data register: SBUF

MOV SBUF,#’A’ ;put char ‘A’ to transmit

MOV SBUF,A ;send data from A

MOV A,SUBF ;receive and copy to A

– An 8-bit register

– Set the usage mode for two timers

• For a byte of data to be transferred via the TxD

line, it must be placed in the SBUF.

• SBUF holds the byte of data when it is received by

the 8051;s RxD line.

Serial port block diagram

SCON Register

• Serial control register: SCON

SM0, SM1 Serial port mode specifier

REN (Receive enable) set/cleared by software to

enable/disable reception.

TI Transmit interrupt flag(set by HW & clear by SW)

RI Receive interrupt flag (set by HW & clear by SW)

SM2 = TB8 = RB8 =0 (not widely used)

SM0 SM1 SM2 REN TB8 RB8 TI RI

(LSB)(MSB)

* SCON is bit-addressable.

REN (Receive Enable)

• SCON.4

• Set/cleared by software to enable/disable

reception.

– REN=1

• It enable the 8051 to receive data on the RxD pin of the 8051.

• If we want the 8051 to both transfer and receive data, REN

must be set to 1.

• SETB SCON.4

– REN=0

• The receiver is disabled.

• The 8051 can not receive data.

• CLR SCON.4

TB8 (Transfer Bit 8)
• SCON.3

• TB8 is used for serial modes 2 and 3.

• The 9th bit that will be transmitted in mode 2 & 3.

• Set/Cleared by software.

RB8 (Receive Bit 8)
• SCON.2

• In serial mode 1, RB8 gets a copy of the stop bit

when an 8-bit data is received

TI (Transmit Interrupt Flag)

• SCON.1

• When the 8051 finishes the transfer of the

8-bit character, it raises the TI flag.

• TI is raised by hardware at the beginning

of the stop bit in mode 1.

• Must be cleared by software.

RI (Receive Interrupt)

• SCON.0

• Receive interrupt flag. Set by hardware

halfway through the stop bit time in mode

1. Must be cleared by software.

• When the 8051 receives data serially via

RxD, it gets rid of the start and stop bits

and place the byte in the SBUF register.

• Then 8051 rises RI to indicate that a byte.

• RI is raised at the beginning of the stop bit.

SM0, SM1

• SM1 and SM0 determine the framing of
data.

– SCON.6 (SM1) and SCON.7 (SM0)

– Only mode 1 is compatible with COM port of
PC.

SM1 SM0 Mode Operating Mode Baud Rate

0 0 0 Shift register Fosc./12

0 1 1 8-bit UART Variable by timer1

1 0 2 9-bit UART Fosc./64 or Fosc./32

1 1 3 9-bit UART Variable

• Mode 0 :

– Serial data enters and exits through RxD

– TxD outputs the shift clock.

– 8 bits are transmitted/received(LSB first)

– The baud rate is fixed a 1/12 the

oscillator frequency.

• Mode 1
– Ten bits are transmitted (through TxD) or received

(through RxD)

– A start bit (0), 8 data bits (LSB first), and a stop bit (1)

– On receive, the stop bit goes into RB8 in SCON

– the baud rate is determined by the Timer 1 overflow

rate.

– Timer1 clock is 1/32 machine cycle (MC=1/12 XTAL)

– Timer clock can be programmed as 1/16 of machine

cycle

– Transmission is initiated by any instruction that uses

SBUF as a destination register.

• Mode 2 :

– Eleven bits are transmitted (through TxD), received

(through RxD)

• A start bit (0)

• 8 data bits (LSB first)

• A programmable 9th data bit

• and a stop bit (1)

– On transmit, the 9th bit (TB8) can be assigned 0 or 1

– On receive, the 9th data bit goes into RB8 in SCON.

– the 9th can be parity bit

– The baud rate is programmable to 1/32 or 1/64 the

oscillator frequency in Mode 2 by SMOD bit in PCON

register

• Mode 3

– Same as mode 2

– But may have a variable baud rate generated

from Timer 1.

Importance of TI flag (1/2)

• The following sequence is the steps that the

8051 goes through in transmitting a character

via TxD:

1. The byte character to be transmitted is written into

the SBUF register.

2. It transfers the start bit.

3. The 8-bit character is transferred one bit at a time.

4. The stop bit is transferred.

SBUF

TxD

bit by bit

8-bit char

UARTTI

• Sequence continuous:

5. During the transfer of the stop bit, the 8051

raises the TI flag, indicating that the last

character was transmitted and it is ready to

transfer the next character.

6. By monitoring the TI flag, we know whether or

not the 8051 is ready to transfer another byte.

– We will not overloading the SBUF register.

– If we write another byte into the SBUF before TI is

raised, the untransmitted portion of the previous

byte will be lost.

7. After SBUF is loaded with a new byte, the TI

flag bit must be cleared by the programmer.

Steps to program the 8051 to

transfer data serially

1.The TMOD register is loaded with the value 20H,
indicating the use of timer 1 in mode 2 to set the
band rate.

2.The TH1 is loaded with one of the values given
in table below to set the band rate.

Band rate TH1(HEX) TH1(Decimal)

9600 FD - 3

4800 FA - 6

2400 F4 - 12

1200 E8 - 24

3.The SCON register is loaded with the value

50H, indicating serial mode 1.

4.TR1 is set to 1 to start timer 1.

5.TI is cleared by the CLR TI instruction.

6.The character byte to be transferred serially is

written into the SBUF register.

7.The TI flag bit is monitored using JNB TI,XX

to see if the character has been transferred

completely.

8.To transfer next character ,go to step 5.

Example

1. Write a program for the 8051 to transfer letter “A”

serially at 4800baud, continuously.

MOV TMOD,#20H ;timer 1, mode 2

MOV TH1,#-6 ;4800 baud rate

MOV SCON,#50H ;8-bit,1 stop,REN enabled

SETB TR1 ;start timer 1

AGAIN: MOV SBUF,#”A” ;letter “A” to be transferred

HERE: JNB TI,HERE ;wait for the last bit

CLR TI ;clear TI for next char

SJMP AGAIN ;keep sending A

2. Write a program to transfer the message “YES” serially at
9600 baud, 8-bit data, 1 stop bit. Do this continuously.

MOV TMOD,#20H ;timer 1, mode 2

MOV TH1,#-3 ;9600 baud

MOV SCON,#50H

SETB TR1

AGAIN:MOV A,#”Y” ;transfer “Y”

ACALL TRANS

MOV A,#”E” ;transfer “E”

ACALL TRANS

MOV A,#”S” ;transfer “S”

ACALL TRANS

SJMP AGAIN ;keep doing it

;serial data transfer subroutine

TRANS:MOV SBUF,A ;load SBUF

HERE: JNB TI,HERE ;wait for last bit to transfer

CLR TI ;get ready for next byte

RET

3. Write a program to send a message “Global Academy Of
Technology” to the PC serially.

0rg 0

mov Tmod, #20h ; Timer 1, mode 2

mov TH1 , #0FAh ; 4800 baud rate

mov SCON, # 50h ; 8bit, 1stop, REN enabled

SETB TR1

mov DPTR , # MYDATA

L1: CLR A

movc A, @A+DPTR

JZ L3 ; check for last character

ACALL SEND

INC DPTR

SJMP L1

SEND: mov SBUF , A

L2 : JNB TI, L2

CLR TI

RET

MYDATA DB “Global Academy Of Technology”, 0

L3 : END

4. Assume a switch is connected to pin P1.7. Write a program to
monitor its status & send two messages to serial port
continuously as follows: SW=0 send “NO”,SW=1 send “YES”.

Sw1 EQU P1.7

org 00h

Main:mov TMOD , #20h

mov TH1, # -3 ;9600 baud rate

mov SCON , #50h

SETB TR1

SETB SW1 ; make SW an i/p

S1: JB P1.7, next ; if SW=0, Display “NO”

mov DPTR, # mess1

FN: CLR A

movC A, @a+DPTR

JZ S1

ACALL SENDCOM

INC DPTR

SJMP FN

Next: mov DPTR, #mess2 ;if SW=1, display “YES”

LN: CLR A

movC A, @A+DPTR

JZ S1

ACALL SENDCOM

INC DPTR

SJMP LN

SENDCOM: mov SBUF ,A

Here: JNB TI, Here

CLR TI

RET

Mess1 DB ‘NO’, 0

Mess2 DB ‘YES’, 0

END

5. A PC is connected to an 8051 system using RS232
interface. Using a 6.0MHz clock for the 8051, design the
8051 program that will transmit the word ‘impossible’ when
the PC sends a word ‘mission’.

With XTAL = 6.0 MHz, we have:

The frequency of system clock = 6.0 MHz / 12 = 500 kHz

The frequency sent to timer 1 = 500 kHz/ 32 = 15625 Hz

15625 / 142 = 110 where 142 =8E (hex)

ORG 100

Sta: MOV SCON, #50H

MOV TMOD, #20H

MOV TH1, 8EH

SETB TR1

Rec: MOV R0, #00

MOV DPTR, #MSG1

Wait: JNB RI, wait

MOV A, SBUF

MOV P1,A

CLR RI

CLR A

MOVC A, @A+DPTR

CJNE A, 01, sta ; compare values from table with received byte

INC DPTR

INC R0

CJNE R0, #07, wait ; receive 7 characters

MOV DPTR #MSG2

MOV R0, #00

Wr: CLR A

MOVC A, @A+DPTR

MOV SBUF, A

Tr1: JNB TI, tr1

CLR TI

INC R0

CJNE R0, #0AH, wr ; check if all characters are written ‘ impossible’

SJMP rec

MSG1 DB ;mission’

MSG2 DB ‘impossible’

Importance of the RI flag

• The following sequence is the steps that the

8051 goes through in receiving a character via

RxD:

1. 8051 receives the start bit indicating that the next

bit is the first bit of the character to be received.

2. The 8-bit character is received one bit at a time.

When the last bit is received, a byte is formed and

placed in SBUF.

SBUFRxD
bit by bit

8-bit

characterUART

RI

• Sequence continuous:

3. The stop bit is received. During receiving the stop

bit, the 8051 make RI=1, indicating that an entire

character was been received and must be picked

up before it gets overwritten by an incoming

character.

4. By monitoring the RI flag, we know whether or not

the 8051 has received a character byte.

– If we fail to copy SBUF into a safe place, we risk the loss

of the received byte.

5. After SBUF is copied into a safe place, the RI flag

bit must be cleared by the programmer.

Steps to program the 8051 to

receive data serially

Step 1 ,2 ,3 ,4 are same as transmitter.

5. RI is cleared with CLR RI instruction.

6.The RI flag bit is monitored with JNB

RI,XX to see if an entire character has

been received yet.

7.When RI is raised, SBUF has a byte.

8. To receive the next character , go to step 5.

Example

1. Program the 8051 to receive bytes of data serially,

and put them in P1. Set the baud rate at 4800, 8-

bit data, and 1 stop bit.

Solution:

MOV TMOD,#20H ;timer1, mode 2 (auto reload)

MOV TH1,#-6 ;4800 baud

MOV SCON,#50H ;8-bit, 1 stop, REN enabled

SETB TR1 ;start timer 1

HERE: JNB RI,HERE ;wait for char to come in

MOV A,SBUF ;save incoming byte in A

MOV P1,A ;send to port 1

CLR RI ;get ready to receive next byte

SJMP HERE ;keep getting data

Doubling the baud rate in the 8051

Two methods:

1.To use higher frequency crystal

2.To change a bit in the PCON register is D7 (SMOD)

First one is not flexible since crystal is fixed. The new crystal
may not be compatible with the IBM PC serial comports
baud rate.

When the 8051 is powered up D7(SMOD bit) if the PCON
register is zero. It can be set to high by software and there
by double the baud rate. It is not bit addressable

mov A, PCON

SETB ACC.7

mov PCON,A

When SMOD=0, Timer

frequency=11.0592MHz = 921.6KHz

12

921.6KHz = 28800Hz

32

When SMOD=1, Timer

frequency=11.0592MHz = 921.6KHz

12

921.6KHz = 57600Hz

16

The following table shows the values loaded into TH1 for both
cases.

TH1(Decimal) (HEX) SMOD=0 SMOD=1

- 3 FD 9600 19200

- 6 FA 4800 9600

- 12 F4 2400 4800

- 24 F8 1200 2400

• Find the baud rate if TH1=- 2, SMOD=1& XTAL=11.0592MHz
,IS this baud rate supports by IBM /compatible PC’s?

Timer 1 frequency = 57600Hz ,with SMOD=1

The baud rate =57600 = 28800

2

This baud rate is not Supported by the BIOS of the PC

Power control register

What is SMOD

– Bit 7 of PCON register

– If SMOD=1 double baud rate

– PCON is not bit addressable

– How to set SMOD

• Mov a, pcon

• Setb acc.7

• Mov pcon,a

Example:

1.Write a program to send the message “The Earth is
One Country” to serial port. Assume a SW is
connected to pin P1.2. Monitor its status and set the
baud rate as follows.

SW=0 ; 4800 baud rate

SW=1 ; 9600 baud rate

Assume XTAL=11.0592 MHz, 8bit data , and 1 stop bit.

org 0h ;starting position

Main: mov TMOD , # 20h

mov TH1, # -6 ;4800 baud rate (default)

mov SCON, #50h

SETB TR1

SETB P1.2 ;make SW an input

S1: JNB P1.2, SLOWSP ; check SW status

mov A, PCON ; read PCON

SETB ACC.7 ; set SMOD High for 9600

mov PCON ,A ; write PCON

SJMP FN ; send message

SLOWSP: mov A, PCON ; read PCON

CLR ACC.7 ; make SMOD low for 4800

mov PCON , A ; write PCON

FN: CLR A

movc A , @A+DPTR ; read value

JZ S1 ; check for end of line

ACALL SENDCOM ; send value to the serial port

INC DPTR ; move to next value

SJMP FN ; Repeat

SENDCOM: mov SBUF , A ; place value in buffer

Here: JNB T1, Here ; wait until transmitted

CLR T1 ;clear

RET ; return

Mess1 DB “The Earth is One Country” , 0

END

4. Write a program to transfer ASCII character ‘B’

continuously. Compute the frequency used by

timer 1 to set the baud rate. Also find the baud

rate of the data transfer.

Mov A, pcon

Setb Acc.7

Mov pcon,A

Mov tmod, #20h

Mov th1, #-3

Mov scon, #50h

Setb tr1

Mov A,#’B’

Loop: clr TI

Mov sbuf, A

L1: jnb TI, l1

Sjmp loop

With smod=1, 921.6 khz/16 = 57600hz

Baud rate of the data transfer is 57600/3 = 19200

