THE 8051 ARCHITECTURE
By Dr. Naveen B

¢

Saturday, May 1, 2021 NAVEEN B



Contents:

Introduction

Architecture

8051 Microcontroller Hardware
Pin Description of the 8051
Registers

Memory mapping in 8051

8051 Flag bits and the PSW register
Stack in the 8051

I/O pins, ports & circuits
Timers & Counters

Serial Data 1/0

Interrupts

* € ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

Saturday, May 1, 2021 NAVEEN B



8051 features
8 bit CPU withreg. A& B

« 16 bit PC & Data pointer (DPTR)
« 8 bit PSW, 8 bit SP, onchip oscillator & clock circuits
« 64k ROM, in which 4K is on-chip, full duplex serial SBUF
« External RAM of 64K bytes & Internal RAM of 128 bytes :
- 4 reqg. banks each containing 8 registers
- 80 bytes of general purpose data memory
-16 bytes which may be addressed at the bit level
32 1/O pins arranged as 4 ports
Two 16 bit timer counters, TO& T1
2 external & 3 internal interrupt sources
« Control registers: TCON, TMOD, SCON, PCON, IP, IE

Saturday, May 1, 2021 NAVEEN B



Block Diagram

PO.0 - POT
Ve £$$I££ % i _____ 3 I$I$I££
= i
; PORT 0 DRIVERS PORT 2 DRIVERS !
aND | T ¥ T i
: i
] 1
= RAM ACDR. PORT 0 PORT 2 i
i REGISTER RAM LATCH LATCH FLASH :
1 1
1 1
| ] 2 |
1 1
! i
| i
i L F L i
i i
i i
— |
PROGRAN !
! B STACK
! ACC ADDRESS !
E REGISTER POINTER REDRESS i
1 1
] 1
1 1
| |
| ‘ ,
! = BIUFFER 1
i TMPZ TMP1 :
! i
1 1
1 1
1 1
| i
: PC :
: AL INCREMENTER ;
1 1
1 1
| INTERRUPT, SERIAL PORT, i
| AND TIMER BLOCKS |
1 1
: . 3 PROGRAM o
: e COUNTER !
1 1
| i
| k i
I 1
FSEH 44— i
] 1
WEPRG s——  TMING | errucTion y X 4 OPTR !
i REGISTER Ll = 1
X/ Ve ——M CONTROL :
RST ——o i
| : ,
| PORT 1 PORT 3 H
! LATCH LATCH 1
] 1
| ] i
1 1
1 1
1 1
1 1
! i
E PORT 1 ORIVERS i
1 1
] 1

L L 4 _______________________________________

Saturday, May 1, 2021 e 'NAVEENB



Pin Description of the 8051

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST
(RXD)P3.0

(TXD)P3.1
(INTO)P3.2
(INT1)P3.3
(TO)P3.4
(T1)P3.5
(WR)P3.6
(RD)P3.7
XTAL2
XTALL
GND

Saturday, May 1, 2021

_

1 40
2 39 [
3 38 g
4 37

. 8051 =
6 (8031) B
7 34 [
8 33
9 32
10 31 [
11 30
12 29 [
13 28 [
14 27 [
15 26 [
16 25 [
17 24 [
18 23 [
19 22
20 21

NAVEEN B

\Vcc
P0.0(ADO)
PO.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
EA/NVPP
ALE/PROG
PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)



Pins of 8051 (1/4)

« Vce (pind0)
— Vcc provides supply voltage to the chip.
— The voltage source is +5V.
« GND (pin20) : ground
« XTAL1and XTAL2 (pins19,18)
— These 2 pins provide external clock.
— Way 1 : using a quartz crystal oscillator &
— Way 2 : using a TTL oscillator &

Saturday, May 1, 2021 NAVEEN B



Pins of 8051 (2/4)

« RST (pin9) : reset
— Itis an input pin and is active high (normally low ) .
 The high pulse must be high at least 2 machine cycles.
— It is a power-on reset.

« Upon applying a high pulse to RST, the microcontroller will
reset and all values in registers will be lost.

» Reset values of some 8051 registers &
— Way 1 : Power-on reset circuit =&
— Way 2 : Power-on reset with debounce &

Saturday, May 1, 2021 NAVEEN B



Pins of 8051 (3/4)

« /EA (pin31) : external access
— There is no on-chip ROM in 8031 and 8032 .

— The /EA pin is connected to GND to indicate the code is stored
externally.

— For 8051, /EA pin is connected to Vcc.

— “/” means active low.

« /PSEN (pin29) : program store enable
— This Is an output pin and is connected to the OE pin of the ROM.

Saturday, May 1, 2021 NAVEEN B



Pins of 8051 (4/4)

« ALE (pin30) : address latch enable
— It is an output pin and is active high.
— 8051 port 0 provides both address and data.

— The ALE pin is used for de-multiplexing the address and data by
connecting to the G pin of the 74LS373 latch.

— /PSEN & ALE are used for external ROM.

 1/O port pins
— The four ports PO, P1, P2, and P3.

— Each port uses 8 pins.
— All'I/O pins are bi-directional.

Saturday, May 1, 2021 NAVEEN B



Figure 4-2 (a). XTAL Connection to 8051

« Using a quartz crystal oscillator
« We can observe the frequency on the XTALZ2 pin.

C2
o I XTAL2
30pF |:|
c1
| I XTAL1
30pF
¢ GND

Saturday, May 1, 2021 NAVEEN B




Figure 4-2 (b). XTAL Connection to an External Clock Source

N XTAL2
C
« Using a TTL oscillator
« XTAL2Z is unconnected. géE?FLI\Ert)R
XTAL1
SIGNAL
Ju
GND

Saturday, May 1, 2021 NAVEEN B E



RESET Value of Some 8051 Registers:

Register Reset Value
PC 0000
ACC 0000
B 0000
PSW 0000
SP 0007
DPTR 0000

RAM are all zero.

Saturday, May 1, 2021 NAVEEN B




Figure 4-3 (a). Power-On RESET Circuit

\VccC
+—
—
10 uF | 31
]
30 pF = 19
= 11.0592 MHz
K
>| T 18
v 30 pF
9

Saturday, May 1, 2021 NAVEEN B

EA/VPP
X1

X2

RST




Figure 4-3 (b). Power-On RESET with Debounce

VccC
(o)
@
| 31
p
l .f'--..lOUF 30pF—
_ -
T = 1 1
. 4
9

Saturday, May 1, 2021

NAVEEN B

EA/NVPP
X1

X2
RST




Pins of I/O Port

« The 8051 has four 1/O ports
— Port0 (pins32-39) : PO (P0.0~P0.7)
— Port1 (pins1-8) : P1 (P1.0~P1.7)
— Port 2 (pins 21-28) : P2 (P2.0~P2.7)
— Port3 (pins 10-17) : P3 (P3.0~P3.7)
— Each port has 8 pins.
« Named P0.X (X=0,1,...,7) ,P1.X, P2.X, P3.X
« Ex : PO.Oisthe bit0 (LSB) of PO
« Ex : PO.7 isthe bit7 (MSB ) of PO
» These 8 bits form a byte.
« Each port can be used as input or output (bi-direction).

Saturday, May 1, 2021 NAVEEN B

X



Registers

Totally 34 GPRs ie. A & B registers along with 4 banks — each bank has 8
registers: RO — R7. Other registers are PC, DPTR & SP

A

B

RO

DPTR DPH DPL

R1

R2 PC PC
R3

R4 Some 8051 16-bit Register
RS

R6

R7

Some 8-bit Registers of the
8051

Saturday, May 1, 2021 NAVEEN B



A and B reqisters
« Holds the results of math & logical operations

« " A’ reqister is also used for data transfers between 8051
& any external memory

« ‘B’ register is used with ‘A’ register for multiplication &
division operations.

Saturday, May 1, 2021 NAVEEN B



Memory mapping in 8051

« ROM memory map in 8051 family

4k 8k
0000H 0000H
OFFFH
1FFFH
8751
AT89C51 8752
AT89C52
— _/
Y

from Atmel Corporation

Saturday, May 1, 2021 NAVEEN B

32k

0000H

DS5000-32

7FFFH

\ J
Y

from Dallas Semiconductor




« RAM memory space allocation in the 8051

Saturday, May 1, 2021

7FH

30H

2FH

20H

1FH
18H
17H
10H

OFH
08H

07H

00H

NAVEEN B

Scratch pad RAM

Bit-Addressable RAM

Register Bank 3

Register Bank 2

(Stack) Register Bank 1

Register Bank 0



A Quick Review of USER’s space.......

00 — 1F : 4 Banks x 8 = 32 reqisters
 ONE bank at a time (RS1-RSO0)

20 — 2F : 16 more locations = 16 Bytes
 Also BIT addressable (00-7F address for the 128 bits)

30 — 7F Scratch Pad (Store-Read-Write-Modify data)
* General Purpose RAM (80 bytes)

80 — FF : Special Purpose CPU Area
« Also Contains the SFRs

Saturday, May 1, 2021 NAVEEN B



Memory Space

FIGURE 2-5 n
Summary of the 8031 memory spaces | FFFF FFFF
|
I
|
: Code Data
| memory memory
|
|
| enabled enabled
I via PSEN via RD
| and WR
I
I
I
FF I
I
|
|
|
00 0000 0000
|
On-chip : External
memory ' memory

Saturday, May 1, 2021 NAVEEN B



Bit Addressable RAM

RAM

Byte Byte

address Bit address address Bit address

»7  [3F[3e]3D|3c|3B[3A[39[38| | . TF

26 [37]36/35(34[33]32(31[30 S

25 |2F|2]2D|2c]2B2A[29[28 2

24 [27]26]|25]24]23(22]21]20} | 2 General

23 [iF[IEhiphicliBl1A]19[18 Z P;m“

22 7helis|afi3|i2]11 |10 5

21 |orloejoplocioBloaloo |os P

20 [07]06|05[0403[02[orfo0] | & 30
IF — " ~ 2F  |7F|7E[7D|7C|7B[7A] 79|78
18 g | 28 [77]76]75]74]73]72[71]70
17 Bank 2 2 | 2p [6F[6E[6D[6C|6B|6A[69|68
10 2 | 3¢ 6616564 [63[62]61 |60
OF Z 1 2B |SF|SE{SD|SC|5B|SA|59|58

Buank | 5

08 5 | 2a [57[56]55]54[53[52[51[50
07 Default register z 29  |4F[4E4D[4C|4B|4A (49|48
00 bank for RO-R7 @ | 28 [47]46]45]|44 (a3 (4241 |40

Saturday, May 1, 2021 NAVEEN B



Summary
of the 8051
on-chip
data
memory

Bit Addressable RAM

(Special Function Registers)

Byte
address

98

90

8D
8C
8B
BA
89
88
87

83
82
81
80

Saturday, May 1, 2021

Bit address
OFOE9D|9C|9B[VA[99198| SCON
07196195194 (93(92(91190| PI

not bit addressable THI
not bit addressable THO
not bit addressable TLI
not bit addressable TLO
not bit addressable TMOD
RF(BE|RDIBC|8BISA|R9 88| TCON
not bit addressable PCON
not bit addressable DPH
not bit addressable DPL
not bit addressable SP
B7|B6(RS5I84|83|82|81|80| PO
NAVEEN B

Byte
address

FF

B3

BO

A

Al

99

Bit address

F6|F5|F4

Fl

E7

E6|ES|E4

El

EO

D7

D6|D5|D4

D3

D2

- | = [BC

BB

BA

B9

B8

B6|B5|B4

B3

B2

Bl

BO

- | = |AC

AB

AAIAY

AR

AG[AS5|A4

A3

A2

Al

Al

not bit addressable

ACC

PSW

IP

P3

IE

SBUF



Register Banks

= Four banks of 8 bit-sized registers, RO to R7

» Addresses are :

18 - 1F for bank 3
10 - 17 for bank 2
08 - OF for bank 1
00 - 07 for bank O (default)

= Active bank selected by bits [ RS1, RSO ] in PSW.

» Permits fast "context switching” in interrupt service
routines (ISR).

Saturday, May 1, 2021 NAVEEN B



Program Status Word (PSW)

TABLE 2-3
°SW (program status word) register summary
BIT

BIT SYMBOL ADDRESS DESCRIPTION
PSW.7 CY D7H Carry flag
PSW.6 AC D6H Auxiliary carry flag
PSW.5 FO D5SH Flag O
PSW.4 RS1 D4H <Register bank select 1
PSW.3 RSO D3H Register bank select O

00 = bank 0; addresses 00H-
01 = bank 1; addresses 08H-
10 = bank 2; addresses 10H-
11 = bank 3; addresses 18H-

PSW.2 oV D2H Overflow flag
PSW.1 — D1H Reserved
PSW.0 P DOH Even parity flag

Saturday, May 1, 2021 NAVEEN B



8051 Flag bits and the PSW register
« PSW Regqister

CY AC FO RS1 RSO oV -- P

Carry flag PSW.7 CY

Auxiliary carry flag PSW.6 AC

Available to the user for general purpose PSW.5 --

Register Bank selector bit 1 PSW.4 RS1

Register Bank selector bit 0 PSW.3 RSO

Overflow flag PSW.2 oV

User define bit PSW.1 --

Parity flag Set/Reset odd/even parity PSW.0 P

For odd Parity, P=1,.

RS1 RSO Register Bank Address

0 0 0 00H-07H
0 1 1 08H-0FH
1 0 2 10H-17H
1 1 3 18H-1FH

Saturday, May 1, 2021 NAVEEN B



Instructions that Affect Flag Bits:

]
=
i
2

AC

Instructions

ADD

ADDC

e I R ] I
e

o
<
M | M| o] o R M| X

SETE

—t

CLE C

ANL Cbit

ANL C bt

OFL C.bit

BCY C bt
CIHE

] I I ] B B

Note: X canbe O or 1

Saturday, May 1, 2021 NAVEEN B



Example:

MOV A, #88H
ADD A#93H
88 10001000
+93 +10010011
11B 10 0011011
CY=1 AC=0 P=0 OvV=1
Example:
MOV A#38H
ADD A#2FH
38 00111000
+2F +00101111
67 01100111
CY=0 AC=1 P=1 OV=0

Saturday, May 1, 2021

Example:
MOV A#9CH
ADD A #64H
9C 10011100
+64 +01100100
100 1 00000000
CY=1 AC=1 P=0 OoVv=0
NAVEEN B



Accessing External
Code Memory

NNNNNNN



Accessing External
Data Memory

Port 0 < >
8051
T4HC373 (1K byte)
EA —-j
D Q AD-AT7

DO-D7

or 7o EPRoM

Figure o o
2-11
Interface P2.0 AR
to 1K P2.1 A9
RAM - EOU— -
WR > - W
PSEN |——— MiE No CopwecTions __I___ CS

Saturday, May 1, 2021 NAVEEN B



Stack 1n the 8051

» The register used to access
the stack is called SP (stack
pointer) register.

« The stack pointer in the
8051 is only 8 bits wide,
which means that it can take
value 00 to 7FH.

« When 8051 powered up, the
SP register contains value
07.

Saturday, May 1, 2021

7FH

30H

2FH

20H

1FH
18H
17

10H

OFA
08H

07
00H

NAVEEN B

Scratch pad RAM

Bit-Addressable RAM

Register Bank 3

Register Bank 2

(Stack) Register Bank 1

Register Bank 0



Example:
MOV R6,#25H
MOV R1,#12H
MOV R4,#0F3H

PUSH 6 *Operand is 8 bit & Direct addressing only
PUSH 1
PUSH 4

0BH 0BH 0BH 0BH

0AH 0AH 0AH 0AH F3

09H 09H 09H 12 09H 12

08H 08H 25 08H = 08H 25

Start SP=07H SP=08H SP=09H SP=0AH



PC ( Program Counter)

« 16 bit registers used to hold the address of a byte In

memory
 Program

Instructions are fetched by PC

e On chip ROM addresses 0000h to OFFFh & external
addresses that exceed OFFFh

 PC s the only reg. that does not have Internal address.

DP TR (Data pointer)
 Two 8 bitregs. DPH & DPL

« Usedto
externa

* DPTRC

furnish memory addresses for internal &
code and external Data access.

oes not have a single internal address

. DPH &

DPL each assigned a address

Saturday, May 1, 2021 NAVEEN B



/O Port Circuitry

HARDWARE SUMMARY

/ /
( 8051 internal bus . (
i

)
Read VCC Read
latch pin

l Port

— | in
D Q {>o——| :
Port
Write latch —
to latch
*Open drain output for

Port O when operating

as an /O port
FIGURE 24

Circuitry for I/O ports

Saturday, May 1, 2021 NAVEEN B



(a) Addr/Data vCC
Read Control
Latch I ]
INT. BUS B 0 Y :‘)mx
P0.X IE
Write to Latch — A
Latch \_ CL Q
1 ot
Read —\rl
Pin
Read vee
(b) Latch JLI
~J
Internal
INT. BUS pull-up
Dpix Q iy
Write to (‘ Latch — |
Ltk "o Q |
]
Read T
Pin
Saturday, May 1, 2021 NAVEEN B




Addr

VCC
(c) Read J,I Control
Latch
~d Internal
- pull-up
INT. BUS
D Q & -
P2.X \MUX
Write to /] Latch @ i i
Latch \' CL Q
Read |
Pin
(d) Read Alternate VCC
Laich ]1 Output
~d Function
Internal
INT. BUS pull-up
D == P3.X
p3x Q e
Write to (‘ Latch — 3—‘
Latch s Q
| 1
~d
Read
Pin Altemate
Input
Function

Saturday, May 1, 2021 NAVEEN B

P2.X
PIN




Alternate Pin-functions

TABLE 2-2 BIT

Alternate pin functions for

potft Sins pin HncH BIT NAME ADDRESS  ALTERNATE FUNCTION
P3.0 RXD BOH Receive data for serial port
P3.1 TXD B1H Transmit data for serial port
P3.2 INTO B2H External interrupt O
P3.3 INT1 B3H External interrupt 1
P3.4 T0 B4H Timer/counter 0 external input
P35 T B5H Timer/counter 1 external input
P3.6 WR B6H External data memory write strobe
P3.7 RD B7H External data memory read strobe
P1.0 T2 90H Timer/counter 2 external input
P11 T2EX 91H Timer/counter 2 capture/reload

Saturday, May 1, 2021 NAVEEN B



/O Port Programming
Port 1 (pins1-8)

¥

« Port 1 is denoted by P1.
— P1.0~P1.7

« We use P1 as examples to show the operations on ports.
— P1 as an output port (i.e., write CPU data to the external pin)
— P1 as an input port (i.e., read pin data into CPU bus)

Saturday, May 1, 2021 NAVEEN B



Read latch

Internal CPU
bus

Write to latch

Read pin

Saturday, May 1, 2021

A Pin of Port 1

| TB2 veer
< Load(L1)
. D Q | P1.X
P1.X pin
< Clk Q [ M1
\/
j TB1
>>P0.x
8051 IC

NAVEEN B



Hardware Structure of 1/0O Pin

« Each pin of 1/O ports
— Internal CPU bus : communicate with CPU
— A D latch store the value of this pin
D latch is controlled by “Write to latch”
— Write to latch=1 : write data into the D latch
— 2 Tri-state buffer : &
« TB1: controlled by “Read pin”
— Read pin=1 : really read the data present at the pin
« TB2: controlled by “Read latch”
— Read latch=1 : read value from internal latch
— A transistor M1 gate
« Gate=0: open

e Gate=1: close
Saturday, May 1, 2021 NAVEEN B



Tri-state Buffer

Output i Input

Tri-state control
(active high)

| H Low
- \
H Highimpedance
(open-circuit)

Saturday, May 1, 2021 NAVEEN B E



Writing “1” to Output Pin P1.X

Read latch

Vee——
B2 o
/4| Load(L1) 2. output pin is
1. write a 1 to the pin i Ve
Internal CPU it D Q ! — - P1.X
bus P1.X pin
) / output 1
Write to latch —< ck o -0 )§§M1 p

Read pin

\

Saturday, May 1, 2021

TB1

8051 IC

NAVEEN B



Writing “0” to Output Pin P1.X

Read latch Voo
B2 o
/4| Load(L1) 2. output pinis
1. write a O to the pin ground
Internal CPU —lp o |° T P1.X
bus P1.X pin
o output O
Write to latch —< ck Q |1 M p
\
] TB1
Read pin
8051 IC

Saturday, May 1, 2021 NAVEEN B



Port 1 as Output ( Write to a Port )

« Send datato Port1 :

MOV A #55H
BACK: MOV P1,A

ACALL DELAY

CPL A

SIMP BACK

— Let P1 toggle.
— You can write to P1 directly.

Saturday, May 1, 2021 NAVEEN B



Reading Input v.s. Port Latch

* When reading ports, there are two possibilities :
— Read the status of the input pin. (from external pin value )
« MOV A, PX
« JINB P2.1, TARGET ;jump if P2.1is not set
 JB P2.1, TARGET ; jump if P2.1 s set

— Read the internal latch of the output port.

« ANL P1 A 'P1<— P1AND A
« ORL P1 A 'P1<—P1ORA
« INC P1 ' increase P1

Saturday, May 1, 2021 NAVEEN B



Reading “High” at Input Pin

Read latch Vce 2. MOV AP1

external pin=High

_ _ TB2
1. write a1 to the pin MOV //I Load(L1)
P1,#0FFH

A 4

1 1 )
Internal CPU bus . D Q It . P1.X pin

YT | Pix

—_ Y
clk Q — %Ml

< TB1

/ I\

Write to latch

AN

Read pin
3. Read pin=1 Read latch=0
Write to latch=1

8051 1C
Saturday, May 1, 2021 NAVEEN B



Reading “Low” at Input Pin

Read latch
vee 2. MOV A,P1
. . TB2
1. write a 1 to the pin //|| Load(L1) external pin=Low

MOV P1,#0FFH

> ! 0 P1.X pin

Internal CPU bus ° 1D Q ° o AP
Y | PiX
— 0 y/

Write to latch < Clk Q %Ml

) Jd  TBI1

Read pin
3. Read pin=1 Read latch=0
Write to latch=1

8051 1C
Saturday, May 1, 2021 NAVEEN B



Port 1 as Input ( Read from Port )

 In order to make P1 an input, the port must be programmed by writing 1 to
all the bit.

MOV A#OFFH ;A=11111111B

MOV P1lA ;make P1 an input port
BACK: MOV AP0 ;get data from PO

MOV P2A ;send data to P2

SIMP BACK

— To be an input port, PO, P1, P2 and P3 have similar methods.

Saturday, May 1, 2021 NAVEEN B



Instructions For Reading an Input Port

 Following are instructions for reading external pins of ports:

Mnemonics Examples Description

MOV A PX MOV A P2 Eirr:gg into A the data at P2
JNB PX.Y,.. JNB P2.1, TARGET Jump if pin P2.1 is low

JB PX.Y,.. JB P1.3,TARGET Jump if pin P1.3 is high
MOV C,PX.Y MOV C,P2.4 Copy status of pin P2.4to CY

Saturday, May 1, 2021

NAVEEN B



Reading Latch

« Exclusive-or the Port 1 :
MOV P1#55H :;P1=01010101
ORL P1#0FOH :P1=11110101

1. The read latch activates TB2 and bring the data from the Q latch into
CPU.

« Read P1.0=0
2. CPU performs an operation.

 This data is ORed with bit 1 of register A. Get 1.
3. The latch is modified.

D latch of P1.0 has value 1.
4. The result is written to the external pin.

 External pin (pin 1: P1.0) has value 1.

Saturday, May 1, 2021 NAVEEN B



Reading the Latch

1. Read pin=0 Read latch=1 Write to
latch=0 (Assume P1.X=0 initially)

Read latch

2. CPU compute P1.X OR 1

_

Internal CPU bus

/l TB2

AN

A 4

Write to latch <

3. write result to latch
Read pin=0 , Read latch=0
Write to latch=1

Read pin

D Q

P1.X

Vce _

Load(L1)

4. P1.X=1

P1.X pin

M1

Clk Q

j TB1

Saturday, May 1, 2021

NAVEEN B

8051 I1C



Read-modify-write Feature

* Read-modify-write Instructions

 This features combines 3 actions in a single instruction :
1. CPU reads the latch of the port
2. CPU perform the operation
3. Modifying the latch
4. \Writing to the pin
— Note that 8 pins of P1 work independently.

Saturday, May 1, 2021 NAVEEN B



Port 1 as Input ( Read from latch )

« Exclusive-or the Port 1 :
MOV P1#55H ;P1=01010101
AGAIN: XOR P1#0FFH ;complement
ACALL DELAY
SIJIMP AGAIN
— Note that the XOR of 55H and FFH gives AAH.
— XOR of AAH and FFH gives 55H.
— The instruction read the data in the latch (not from the pin).
— The instruction result will put into the latch and the pin.

Saturday, May 1, 2021 NAVEEN B



Read-Modify-Write Instructions

Mnemonics Example

ANL ANL P1,A

ORL ORL P1,A

XRL XRL P1,A

JBC PX.Y, TARGET JBC P1.1, TARGET
CPL CPL P1.2

INC INC P1

DEC DEC P1

DIJNZ PX, TARGET DJNZ P1,TARGET
MOV PX.Y,C MOV P1.2,C

CLR PXY CLR P1.3

SETB PX.Y SETB P1.4

Saturday, May 1, 2021

NAVEEN B



You are able to answer this Questions:

« How to write the data to a pin ¢
« How to read the data from the pin
— Read the value present at the external pin.
« Why we need to set the pin first ¢
— Read the value come from the latch ( not from the external
pin) .
« Why the instruction is called read-modify write?

Saturday, May 1, 2021 NAVEEN B



Other PiIns

« P1, P2, and P3 have internal pull-up resisters.
— P1, P2, and P3 are not open drain.

» PO has no internal pull-up resistors and does not connects to
Vcc inside the 8051.

— PO iIs open drain.
— Compare the figures of P1.X and P0.X. &

» However, for a programmer, it is the same to program PO, P1,
P2 and P3.

 All the ports upon RESET are configured as output.

Saturday, May 1, 2021 NAVEEN B



Read latch

Internal CPU
bus

Write to latch

Read pin

Saturday, May 1, 2021

A Pin of Port O

P0O.X

/4| TB2
* D Q *
P1.X
< Clk Q [ M1
\V4
j TB1
8051 IC

NAVEEN B

pin

>X>P1.x



Port 0 ( pins 32-39)

« PO Is an open drain.

— Open drain is a term used for MOS chips in the same way
that open collector is used for TTL chips. >

* When PO is used for simple data I/O we must connect it to
external pull-up resistors.

— Each pin of PO must be connected externally to a 10K ohm
pull-up resistor.

— With external pull-up resistors connected upon reset, port O
Is configured as an output port.

Saturday, May 1, 2021 NAVEEN B



Port O with Pull-Up Resistors

PO.0

DS5000 58% |
8751 pp3 :

P0.4
891 pyg :

PO.6 :
PO.7 :

O A0

Saturday, May 1, 2021 NAVEEN B



Dual Role of Port O

» When connecting an 8051 to an external memory, the 8051 uses
ports to send addresses and read instructions.

— 8051 is capable of accessing 64K bytes of external memory.

— 16-bit address : PO provides both address A0-A7, P2 provides
address A8-A15.

— Also, PO provides data lines DO-D7.

« When PO is used for address/data multiplexing, it is connected to the
74L.S373 to latch the address.

— There is no need for external pull-up resistors

Saturday, May 1, 2021 NAVEEN B



74LS373

PSEN OE

HLE G| 74LS373 L oC

P0.0 o g A0

PO.7 Bt A7

DO

. D7

P2.0 A8

P2.7 A15
8051 ROM

Saturday, May 1, 2021 NAVEEN B



Reading ROM (1/2)

2. 74373 latches the

1. Send address to —

PSEN ROM addressRacr)llc\JI/I send o | "5
e G| 74LS373 [ oC
P0.0 ® F A0

??" Bis
PO.7 :k —— e A/
Addtess
DO
D7
EA
P2.0 A8
Pl —lp——wulp—wulp Al2
8051 ROM

Saturday, May 1, 2021 NAVEEN B



Read|ng ROM (2/2 2. 74373 latches the

address and send to

ROM
PSEN OE
ALE G| 74LS373 L o
P0.0 “,.' D D A0
PO0.7 &= . = A7

Address
DO
EA D7
= 3. ROM send the
P20 instruction back A8
P2.7 S ——— ——————— Al?2
8051 ROM

Saturday, May 1, 2021 NAVEEN B



ALE Pin

* The ALE pin is used for de-multiplexing the
address and data by connecting to the G pin of
the 74L.S373 latch.

— When ALE=0, PO provides data DO-D~.
— When ALE=1, PO provides address AO0-A7.

— The reason is to allow PO to multiplex address and
data.

Saturday, May 1, 2021 NAVEEN B



Port 2 (pins 21-28 )

 Port 2 does not need any pull-up resistors since
It already has pull-up resistors internally.

 |n an 8051-based system, P2 are used to
provide address A8-A1l5.

Saturday, May 1, 2021 NAVEEN B



Port 3 (pins 10-17)

« Port 3 does not need any pull-up resistors since it already
has pull-up resistors internally.

 Although port 3 is configured as an output port upon reset,
this Is not the way it Is most commonly used.

 Port 3 has the additional function of providing signals.
— Serial communications signal : RxD, TxD ( Chapter 10 )
— External interrupt : /INTO, /INT1 ( Chapter 11)
— Timer/counter : TO, T1 ( Chapter 9)

— External memory accesses in 8031-based system : /WR,
/[RD ( Chapter 14)

Saturday, May 1, 2021 NAVEEN B



Port 3 Alternate Functions

P3 Bit Function Pin
P3.0 RxD 10
P3.1 TxD 11
P3.2 INTO 12
P3.3 INT1 13
P3.4 TO 14
P3.5 T1 15
P3.6 WR 16
P3.7 RD 17

Saturday, May 1, 2021 NAVEEN B

X



Counters & timers

To relinquish the Burden of the processor from
software loops for timing & counting , two 16 bit
counters TO & T1 are provided. These 2 are
divided into 8 bit registers as timer low(TLO, TL1)
and high(THO, TH1) bytes. Counter action Is
controlled by timer mode control (TMOD ) &
timer/counter control reg. (TCON)

Saturday, May 1, 2021 NAVEEN B



TCON Register:

TF1 |TR1|TFo |TRO | IE1 | IT1 | IEO | ITO

TF1: Timer 1 overflow flag.

TR1: Timer 1 run control bit.(set to 1 to enable timer to count)
TFO: Timer O overflag.

TRO: Timer O run control bit.

|IE1: External interrupt 1 edge flag.

IT1: External interrupt 1 type flag.

|IEO: External interrupt O edge flag.

ITO: External interrupt O type flag.

Saturday, May 1, 2021 NABHREN B



Timer mode control reg. (TMOD)

(Not bit addressable)

C/T

MI
M0

M1
0

Saturday, May 1, 2]0121

(MSB) (LSB)
GATE | CO/T Ml MO 1 GATE | C/T Ml MO

Timer 1 Timer 0

GATE Gating control when set. Timer/counter is enabled only while the INTx pin is

high and the TRx control pin is set. When cleared, the timer is enabled
whenever the TRx control bit is set.

Timer or counter selected cleared for timer operation (input from internal
system clock). Set for counter operation (input from Tx input pin).

Mode bit 1
Mode bit 0
MO  Mode Operating Mode
0 0 13-bit timer mode
8-bit timer/counter THx with TLx as 5-bit prescaler
| 1 16-bit timer mode

16-bit timer/counters THx and TLx are cascaded; there is
no prescalar

0 2 8-bit auto reload
8-bit auto reload timer/counter; THx holds a value which is
to be rel i ig TLx each time it overflows.

1 3 Split timer mode

Fion

re 0.2 TMOD Reoicter




Gate = 0 : start & stop are software control
(Start by SETB TRx & stop by CLR TRX)

Gate = 1 : start & stop are controlled by hardware
by an external source (Pins P3.2 & P3.3)

Saturday, May 1, 2021 NAVEEN B



Mode O

Timer TLX THX —> [TFx
Clock {5 bits) {8 bits)
Overflow
Mode 1 flag
Timer
Clock TLX THX — TFx
Overflow
Mode 2 flag
Timer
Clock TLX EH TFx
% Overflow
i1 Le o
THX
Mode 3
Timer -
Clock TL1 TH1 - -
Timer -
Clock TLO TFO
Overflow
flag
12 Fl']m THO — |TF1
Overflow
flag
NAVEEN B

Saturday, May 1, 2021



Interrupt :

Program execution without intrrupts :

Time

=

Main Program

Program execution with intrrupts :

ISR ISR ISR

Main Main Main

Time
5

ISR : Intrrupt Service Routin

Saturday, May 1, 2021 NAVEEN B




Interrupt Vectors

Interrupt Vector Address
System Reset 0000H
External O 0003H
Timer 0 000BH
External 1 0013H
Timer 1 001BH
Serial Port 0023H
Timer 2 002BH

Saturday, May 1, 2021 NAVEEN B



Interrupt Enable Register :

EA| — (ET2| ES | ET1 [EX1 | ETO|EX0

 EA : Global enable/disable.
. - Undefined.

« ETZ2 :Enable Timer 2 interrupt.
e ES :Enable Serial port interrupt.
« ET1 :Enable Timer 1 interrupt.
« EX1 :Enable External 1 interrupt.
« ETO : Enable Timer O interrupt.
« EXO : Enable External O interrupt.

Saturday, May 1, 2021 NAVEEN B



Interrupt priority register

pT2 || Ps || PT1 || Px1 || PTO

P X0

Bit symbol function
7 -- not implemented
6 -- not implemented
5 PT2 reserved for future use
4 PS priority for serial port interrupt
3 PT1 priority for timer 1 overflow interrupt
2 PX1 priority for external interrupt 1
1 PTO priority for timer O overflow interrupt
0 PXO0 priority for external interrupt O

P=0 (Iow priority)
Saturda 1, 2021 NAVEEN B

ng priority)




Interrupt priority

 If the 2 interrupts with the same priority occur at the
same time, then they have the following ranking-

- IEO, TFO, IE1, TF1, Serialinterrupt (Rl or TI)

Saturday, May 1, 2021 NAVEEN B



Serial data I/O
« 8051 has a full duplex serial port

e SBUF to hold data, SCON controls data

communication and PCON controls ©

ata rates

« SBUF is physically 2 regs., one is to

nold write

only data and another is read only data

Saturday, May 1, 2021 NAVEEN B



Serial

port control (SCON)

SMO SM1 SM2

REN TB8 RBS Tl

RI

r~—

symbol
SMO

SM1
SM2
REN
TB8
RBS
Tl
RI

Saturday, May 1, 2021

OHI\)OO-hU'ICD\I"

function
serial port mode bit O

serial port mode bit 1
multiprocessor commn. Bit
receive enable bit
transmitted bit 8

received bit 8

transmit interrupt flag

receive interrupt flag
NAVEEN B




There are 4 programmable modes for serial data commn.

SMO SM1 Mode

0 0

0 1
1 0
1 1

0

1
2
3

Description

shift reqgister; baud=f/12

8-bit UART ; baud=variable
9-bit UART ; baud=f/32 or {/64
9-bit UART,; baud=variable

Mode 0 (shift register mode) : SBUF to transmit/receive 8 data bits
using pin RXD for both functions. TXD is used to supply shift
pulses to external circuits. Baud rate is fixed at f/12.

Saturday, May 1, 2021

NAVEEN B



Mode 1 (standard UART): SBUF becomes a 10-bit full duplex
receiver/transmitter at the same time using RXD & TXD.
1 start bit, 8 data bits (LSB first) & 1 stop bit. 8 data bits go
to SBUF, start bit is discarded & stop bit is saved in RBS8.

Mode 2 (multiprocessor mode): similar to model except 11
bits are transmitted (9 data bits). 9t bit is copied from bit
TB8 during transmit & stored in bit RB8 when data is
received. Both start & stop bits are discarded.

For multiprocessor commn., set the 9" data bit.

Mode 3 (serial data mode): this is identical to mode 2 except
that the baud rate is as in mode 1, using timer 1 to

generate frequencies.
Saturday, May 1, 2021 NAVEEN B



PC variable Baud Rates

110 bps
150
300
600
1200
2400
4800
9600 (default)
19200

Saturday, May 1, 2021 NAVEEN B



Power mode control (PCON)

SMOD -- - - GF1 GFO PD IDL
Bit symbol function

7 SMOD serial baud rate modify bit
6-4 -- not implemented

3 GF1 general purpose user flag bit 1
2 GFO general purpose user flag bit O
1 PD power down bit

0 IDL iIdeal mode Dbit

e This | S, not bit addressa I%

Saturday, May 1 N E



8051Instruction Set

By Dr. Naveen B

NNNNNNN



Data Transfer Instructions

MOVE Destination, Source

MOV Rn, A
MOV Rn, direct

MOV DPTR, # data 16
MOVC A, @ A+ DPTR
MOVC A, @ A+PC

MOVX A, @DPTR

MOVX @DPTR, A
MOVX A, @RI ** No flags are affected

NAVEEN B



Logical Operations

Byte level Logical operations

The operations are done in each individual bit of the source & destination
bytes.

ANL A  Rn
ORL A, @Rp
XRL A . #27h

Destination is Accumulator or direct addressing & source may be
any addressing mode.

« Use port as asource but not as a destination
CLR A Clear Acc

CPL A Complement Acc
** No flags are affected

NAVEEN B



Bit level Logical Operations
« Itis very convenient to alter a single bit of a byte.

CPL C (Complement)

CPL bit

ANL C, bit AND direct bitto CY
ANL C, /bit

ORL C, bit
ORL C, /bit
EX:SETB 00h ...Bit 0 of RAM byte 20h = 1

ANL C, /00h ...c=0; bit 0 of RAM byte 20h =1

NAVEEN B



BOOLEAN OPERATIONS

CLR C Clear CY
CLR bit Clear direct bit
SETB C Set CY

SETB bit Set direct bit (SETB P2.4)
MOV C, hit Move direct bitto CY
MOV bit, C Move CY to direct bit

MOV 7Fh, C ....Bit7 of RAM byte 2Fh =1..Assume C=1
Note:
CLR A ---itis for byte & only ‘A’ reg. no other
registers or addressing modes
CLR Acc.0 for individual bit in ‘A’ reg.
CLR b  bitsin SFRs & bit addressable area.

NAVEEN B



RL A Rotate Acc
RR A Rotate Acc
RLC A Rotate Acc
RRC A Rotate Acc

_eft : bn+ € bn
Right © bn € bn+
_eft through Carry

Right through Carry

SWAP A Exchange between the nibbles

*Only CY flag is affected in RRC A & RLC A

NAVEEN B



Example programs:

1) Double the number in Reg. R2 & put the result in R3 & R4.

CLR C
MOV A, R2
RLC A
MOV R4, A
CLR A
RLC A
MOV R3, A

2) OR the contents of ports 1 & 2, put the result in external RAM
location 0100h

MOV A, 90h

ORL A, OAOh

MOV DPTR, #0100h
MOVX @DPTR, A

NAVEEN B



3) Configure P1 to read switches at P1.0 & P1.1. If
P1.0 is high, turn ON a relay connected to P2.5 by
sending a logic high o/p. If P1.0 is low, clear P2.5. If
the status of the switch at P1.1 is high, turn OFF the
relay connected to P2.6 by sending a logic low o/p. If
P1.1is low, set P2.6 to high state.

Logic:

i/p’s at P1 o/p’s at P2
XXXXXX00 XLOXXXXX
XXXXXX01 XIIXXXXX
XXXXXX10 XOOXXXXX

XXXXXX11 XOIXXXXX

NAVEEN B



Program:

mov pl, #0OFFh
Mov p2, #00h
Mov A, pl
Anl A, #03h
Cpl Acc.1

Rl a

Rl a

Rl a

Rl a

Rl a

Mov p2, A

NAVEEN B



4) Swap every even numbered bit of register R3 in bank O woth the odd
numbered bit to its left. Swap bit O with bit 1, bit 2 with bit 3, and so on
until bit 6 is swapped with bit 7

MOV A, R3

RL A

ANL A, #0AAh

PUSH OEOh

MOV A, R3

RR A

ANL A, #55h

MOV R3, A

POP OEOh

ORL 03h, A (ORL R3, A .... Not allowed)

NAVEEN B



5. Assume that bit P2.2 is used to control an
outdoor light and bit P2.5 a light inside a
building .Show how to turn on the outside
light & turn off the inside one.

SETB C
ORL C, P2.2
mov P2.2, C
CLR C
ANL C, P2.5
mov P2.5 ,C

NAVEEN B

11



6. Assume that registers A has packed BCD. Write a
pgm to convert packed BCD to two ASCII numbers
& place them in R2 & R6.

mov A, # 29h

mov R2, A
ANL A, # OFh
ORL A, #30h
moVv R6, A
mov A, R2
ANL A, # OFOh
RRA

RRA

RRA

RRA

ORL A, # 30h

mov R2, A

NAVEEN B 12



Arithmelic Instructions
Incrementing and decrementing

INC A ; operand may be any addressing
except Immediate

INC DPTR

DEC A :operand may be any addressing
except Immediate

Thereisno “‘DEC DPTR”

* No flags are affected

NNNNNNN



Addition and subtraction:

« ADD A, Source byte | OV, AC, CY ]
« ADDC A, Source byte [ OV, AC, CY |
« SUBB A, source byte [QV, AC, CY]

Subtract with borrow:
(A) € (A) - source byte -CY

‘A’ register is the destination, & source may
be any addressing mode

NNNNNNN



Unsigned addition: This make use of the carry flag to

detect when the result of an ADD operation is a number larger
than FF h.

00 to 255d
905d = 010111110b =5Fh
189d = 10111101b =BDh
_284d 100011100 b 11Ch

Signed addition:if unlike signed numbers are added, then it

IS not possible for the result to be larger than -128 d to +127 d,
and the result will always be correct.

Ex1l. -001d =111111110Db =FF h
+027d =00011011Db = 1Bh
+026d 100011010b =+ 026d 11Ah

NAVEEN B 15



Adding two +ve

numbers, result may exceed +128d

Ex2: +100d =01100100b =64h
+050d = 00110010b 32h
150d 010010110b =-106d 096h correct result= +22d
ov=1
Ex3: +045d =00101101b =2Dh
+075d =01001011b =4Bh
+120d 001111000b =120d 078h  OV=0 (result not exceeded)

The result of adding two —ve numbers together for a sum that
does not exceed the —ve limit.

Ex; - 030d
- 050d
- 080d

oV

=11100010b = E2h
11001110b = CEh
110110000b 1BOh

=0

NAVEEN B 16



Adding Two —ve numbers whose sum does
exceed -128d

-070d =10111010b =BAN
-070d _ =10111010b = BAh
-140d =101110100b = +116d 174h

OV= 1 (correct result= -12d)

Flags Action

Cy OV

0 0 none

0 1 compliment the sign
1 0 none

1 1 compliment the sign

NAVEEN B

17



Unsigned subtraction:

Subtraction of a larger number from a smaller number.

0150 = 00001111b =O0FOh
1000 = 01100100b = 064h
- 085¢ =110101011Db

The carry flag is setto 1 & OV=0.
2's compliment of the result = 085d.

100d = 01100100b =64h
015d = 00001111b =O0Fh
085d =001010101b =055h

C=0, OV=0 (Magnitude of the result is in true form).

NAVEEN B

18



Signed subtraction:

When numbers of like sign are subtracted

It IS Impossible for the result to exceed

positive or negative magnitude limits of

+127 or -128.

+100d =01100100b(carry flag is O before
SUBB)=64h
sub +126d =01111110b = 7Eh
- 026d =111100110b = 1E6h
cy=1, OV=0

NAVEEN B 19



Using two negative numbers
-061d =11000011b ( CY=0 before

SUBB) = C3h
Subb -116d = 10001100b = 8Ch
+055d 000110111b 037h

CY=0, OV=0

NAVEEN B 20



An overflow Is possible when subtracting
numbers of opposite sign

-099d =10011101b(cy=0 before SUBB) =9Dh

+100d =01100100b =64h
-199d =000111001b = +057d =039h
Ov=1,cy =0

Because the overflow flag is set to 1, the
result must be adjusted so that 2’s
compliment is 71d

NAVEEN B 21



+ 087d =01010111b(cy=0 before SUBB) =57h

-052d _ =11001100b = cch
+139d =110001011b =-177d =18bh
OV=CY=1

The magnitude can be interpreted as +011d

The general rule is that if the overflow flag Is
set to 1, then compliment the sign bit . The
overflow flag also signals that the result is
greater then -128d or + 127d

NAVEEN B 22



Multiple byte Arithmetic

+32767d
+00004d
+87654d
+78659d

ADDC A, source byte

NAVEEN B



1) Write a pgm to add two 16 bit numbers

CLR C

mov A, # OE7h
ADD A, # 8Dh
mov R6, A
mov A, # 3Ch
ADDC A, #3Bh
mov R7, A

NAVEEN B

24



2) Write a pgm to subtract two 16 bit numbers.

CLR C

mov A, # 62h
SUBB A, # 96h
mov R7, A
mov A, # 27h
SUBB a, # 12h
mov R6 , A

NAVEEN B 25



MUL AB [OV, CY]
(B:A) € AXxB Always Clears CY

OV =1 if Results > FF (not an error,
signals that the result is larger than 8-bit)

DIV AB
(A / B) Quotient in (A)
Reminder in (B)
Divide by 0 =2 OV =1 : Invalid result

DA A Decimal Adjust after addition

( CY flag Is set if the adjusted No. exceeds 99 BCD & reset
otherwise)

NAVEEN B 26



Example programs

1.Add the unsigned numbers found In the internal
RAM locations 25h,26h,&27h together & put the
result in RAM locations 31(MSB) & 30h(LSB)

Mov 31h,#00h

Mov A,25h for BCD numbers
ADD A,26h ............ DAA
Mov RO, A

Mov A, # 00h
ADDC A,31h
Mov 31h,A
Mov A,RO
ADD A27h ... DAA
Mov 30h,A
Mov A,#00h
ADDC A,31h
Mov 31h,A

NAVEEN B 27



2. Multiply the unsigned number in register
R3 by the unsigned number on port 2 & put
the result in external RAM locations
10h(MSB) & 11h(LSB)

Mov A,0AOh
Mov OFOh,R3
MUL AB

mov RO, #11h
Movx @RO,A
DEC RO

Mov A,0FOH
Movx @RO,A

NNNNNNN



3. Write a pgm to get a byte of hex data from
P1 & convert it to decimal.

mov A, # OFFh
mov P1, A
mov A, P1
mov B, # OAh

DIV AB

mov R/, B
mov B, # OAh
DIV AB
moVv R6, B
moVv R5, A

NAVEEN B

29



Jump & CALL instructions

* These can replace the contents of PC with a
new program address

» The difference in bytes of the present & the new
address Is called the RANGE.

There are 3 ranges:

- Relative range ( +127 bytes to -128 bytes)
- Absolute range ( 2K byte pages)

- Long range ( from 0000h to FFFF h)

NNNNNNN



Absolute range may be divided into a series of pages of
any convenient binary size such as 256bytes, 2K, 4K,
and so on....

In 8051 it has 2K page size giving a total of 32 pages.

The upper 5 bits of the PC hold the page number &
lower 11 bits hold the address with in each page.

page address (HEX)
00 0000 - O7FF
01 0800 — OFFF
02 1000 — 17FF

1F F800 — FFFF

NAVEEN B 31



BIT JUMPS

 JC radd
JNC radd

\Y

\J

\ Y

JB  bit, radd
JNB bit, radd
IBC bit, radd

(Jump If direct Bit Is set)

(Jump If direct Bit is Notset)

(Jump If direct Bit Is set &
Clear it)

NAVEEN B 32



BYTE JUMPS

« JZ radd Jump if Acc =00 ( no zero flag)
« JNZ radd
C /for Compare : D for Decrement

1. CIJNE Rn, #data, rel
Compare immediate data to Register : Jump if not equal

2. CIJNE @RI, # data, rel
Compare immediate data to indirect : Jump if not equal

3. CINE A, # data, rel
4, CINE A, direct, rel
5. DINZ Rn, rel Dec Rn : Jump if it’s not 0
6. DIJNZ direct, rel Dec direct: Jump if not O

ALL CONDITIONAL JUMPS ARE relative JUMPS

NAVEEN B

33



Unconditional Jumps

Do not test any bit or byte

JMP @ A+ DPTR Jump indirect relative to DPTR
(PC) € (A) + (DPTR)  Sources are unaltered
16 bit addition

AJMP sadd Absolute Jump within the 2K space

LIMP ladd Long Jump to anywhere in the
64K memory space

SJMP radd

NAVEEN B 34



CALLS AND SUBROUTINES

ACALL sadd

L CALL ladd
here are NO Conditional CALLS in 8051

RET Return from the subroutine
RETI Return from the Interrupt

NOP No Operation

NNNNNNN



1. Place any number in internal RAM location 3Ch and
iIncrement it until the number equals 2Ah

One: CLR C One: INC 3Ch
mov A, #2Ah mov A, #2Ah
SUBB A, 3Ch OR CJNE A, 3Ch
JZ done NOP
INC 3Ch
SJMP one

Done: NOP

NAVEEN B 36



2. A number Abh

Is placed somewhere In

external RAM between locations 0100h and
0200h. Find the address of that location and
put that address in R6(LSB) & R7(MSB).

mov 20h, #0A6h

mov DPTR
Back: INC
movX a, @

, # O0FFh
DPTR
DPTR

CJNE a, 20

N, Back

mov R7, 83h

mov R6, 82h

NAVEEN B 37



3. Find the address of the first two internal RAM locations
between 20h and 60h which contain consecutive numbers.
If so set the carry flag to 1, else clear the flag.

mov 81h, #65h
mov RO, #20h
next: mov A, @RO
Inc A
mov 1Fh, A
Inc RO
Acall Done
JNC Through
mov A, @ RO
CINE A, 1Fh, next
SETB 0OD7h
Through: Symp through
Down : CLR C
mov A, # 61h
XRL A, RO
JNZ Back
RET
Back : CPLC
RET

NAVEEN B



4. Assume that RAM location 40-44 have the
values 7D,EB,C5,5B & 3Ch respectively. Write a
program to find the sum of the values.

moVv RO, # 40h
mov R2, #5
CLR A
mov R7 A

Again: ADD A, @ RO
JNC next

NC R7

next : INC RO

DIJNZ R2, Again

NAVEEN B



5. Write a pgm to find the sum of the 10 BCD
numbers stored in RAM locations storing at 40h.

movVv RO, #40h
mov R2, #0Ah
CLR A
mov R7, A
Again: ADD A, @RO
DA A
JNC Next
NC R7
Next : INC RO
DIJNZ R2 , Again

NAVEEN B



6) Write a pgm that finds the number of 1’s in a
given byte.

mov P1,#0
mov R7, # 8
mov A, # 97h
Again: RLC A
JNC Next
INC R1
Next : DIJNZ R7, Again

/) Write a pgm to add 3 to the accumulator 10 times

mov A, #0
mov R2, # 10

Again: ADD A, # 03
DIJNZ R2, Again
mov R5, A

NAVEEN B

41



8. Find the sum of the values 79h,F5h & E2h, put the
sum in registers RO & RS5.

mov A, # 00

mov R5, A
ADD A, # 79h
JNC N1
INC R5

N1: ADD A, # OF5h
JNC N2
INC R5

N2: ADD A, # OE2h
JNC over
INC R5

over: mov RO, A

NAVEEN B 42



9. A washing machine is designed for a voltage
range of 180 - 240v. If the voltage is above 240v or
below 180v, the washing machine will shut down
by turning OFF a relay connected to P1.0. Assume
that the voltage can be read at port O in the range
0-255v. Write a pgm to implement this operation.

. ORG 100h

Input: mov PO, # OFFh
mov A, PO
SUBB A, # 180
JC off
mov A, PO
SUBB A, # 240
JNC off
SIJMP input
Off : CLR P1.0
SIJMP input

NAVEEN B

43



10. Write a pgm to separate an 8bit 2’s complement
number into magnitude & sign bit.

mov PO. #00h
mov P2, #00h
mov RO, # OFEh
mov A, RO
JB Acc.7, convert ....... Check the sign bit
mov A, RO
DBP: mov PO, A
Loop: SJMP loop
Convert: SETB P2.0
CPL A
INC A
SJMP DBP

NAVEEN B




11. Write apgm to find the square root of a number.

Program: Logic:
mov R3, # 36 RO R1  N=N-odd number
mov RO, # 00h 5 ] .
mov R1, # 01h
. 1 3 35-3=32
Loopl: CLRC
2 5 27
mov A, R3 - 7 -
SUBB A, R1
4 9 11
mov R3, A
JNC square S 11 00
mov A, RO 6 13 00-13=-13
mov PO, A

loop: SJIMP loop
Square: INC RO
mov A, R1
ADD A, #02h
mov R1, A
SIMP loop1l

NAVEEN B 45



8051Instruction Set

By Dr. Naveen B

NNNNNNN



Data Transfer Instructions

MOVE Destination, Source

MOV Rn, A
MOV Rn, direct

MOV DPTR, # data 16
MOVC A, @ A+ DPTR
MOVC A, @ A+PC

MOVX A, @DPTR

MOVX @DPTR, A
MOVX A, @RI ** No flags are affected

NAVEEN B



Logical Operations

Byte level Logical operations

The operations are done in each individual bit of the source & destination
bytes.

ANL A  Rn
ORL A, @Rp
XRL A . #27h

Destination is Accumulator or direct addressing & source may be
any addressing mode.

« Use port as asource but not as a destination
CLR A Clear Acc

CPL A Complement Acc
** No flags are affected

NAVEEN B



Bit level Logical Operations
« Itis very convenient to alter a single bit of a byte.

CPL C (Complement)

CPL bit

ANL C, bit AND direct bitto CY
ANL C, /bit

ORL C, bit
ORL C, /bit
EX:SETB 00h ...Bit 0 of RAM byte 20h = 1

ANL C, /00h ...c=0; bit 0 of RAM byte 20h =1

NAVEEN B



BOOLEAN OPERATIONS

CLR C Clear CY
CLR bit Clear direct bit
SETB C Set CY

SETB bit Set direct bit (SETB P2.4)
MOV C, hit Move direct bitto CY
MOV bit, C Move CY to direct bit

MOV 7Fh, C ....Bit7 of RAM byte 2Fh =1..Assume C=1
Note:
CLR A ---itis for byte & only ‘A’ reg. no other
registers or addressing modes
CLR Acc.0 for individual bit in ‘A’ reg.
CLR b  bitsin SFRs & bit addressable area.

NAVEEN B



RL A Rotate Acc
RR A Rotate Acc
RLC A Rotate Acc
RRC A Rotate Acc

_eft : bn+ € bn
Right © bn € bn+
_eft through Carry

Right through Carry

SWAP A Exchange between the nibbles

*Only CY flag is affected in RRC A & RLC A

NAVEEN B



Example programs:

1) Double the number in Reg. R2 & put the result in R3 & R4.

CLR C
MOV A, R2
RLC A
MOV R4, A
CLR A
RLC A
MOV R3, A

2) OR the contents of ports 1 & 2, put the result in external RAM
location 0100h

MOV A, 90h

ORL A, OAOh

MOV DPTR, #0100h
MOVX @DPTR, A

NAVEEN B



3) Configure P1 to read switches at P1.0 & P1.1. If
P1.0 is high, turn ON a relay connected to P2.5 by
sending a logic high o/p. If P1.0 is low, clear P2.5. If
the status of the switch at P1.1 is high, turn OFF the
relay connected to P2.6 by sending a logic low o/p. If
P1.1is low, set P2.6 to high state.

Logic:

i/p’s at P1 o/p’s at P2
XXXXXX00 XLOXXXXX
XXXXXX01 XIIXXXXX
XXXXXX10 XOOXXXXX

XXXXXX11 XOIXXXXX

NAVEEN B



Program:

mov pl, #0OFFh
Mov p2, #00h
Mov A, pl
Anl A, #03h
Cpl Acc.1

Rl a

Rl a

Rl a

Rl a

Rl a

Mov p2, A

NAVEEN B



4) Swap every even numbered bit of register R3 in bank O woth the odd
numbered bit to its left. Swap bit O with bit 1, bit 2 with bit 3, and so on
until bit 6 is swapped with bit 7

MOV A, R3

RL A

ANL A, #0AAh

PUSH OEOh

MOV A, R3

RR A

ANL A, #55h

MOV R3, A

POP OEOh

ORL 03h, A (ORL R3, A .... Not allowed)

NAVEEN B



5. Assume that bit P2.2 is used to control an
outdoor light and bit P2.5 a light inside a
building .Show how to turn on the outside
light & turn off the inside one.

SETB C
ORL C, P2.2
mov P2.2, C
CLR C
ANL C, P2.5
mov P2.5 ,C

NAVEEN B

11



6. Assume that registers A has packed BCD. Write a
pgm to convert packed BCD to two ASCII numbers
& place them in R2 & R6.

mov A, # 29h

mov R2, A
ANL A, # OFh
ORL A, #30h
moVv R6, A
mov A, R2
ANL A, # OFOh
RRA

RRA

RRA

RRA

ORL A, # 30h

mov R2, A

NAVEEN B 12



Arithmelic Instructions
Incrementing and decrementing

INC A ; operand may be any addressing
except Immediate

INC DPTR

DEC A :operand may be any addressing
except Immediate

Thereisno “‘DEC DPTR”

* No flags are affected

NNNNNNN



Addition and subtraction:

« ADD A, Source byte | OV, AC, CY ]
« ADDC A, Source byte [ OV, AC, CY |
« SUBB A, source byte [QV, AC, CY]

Subtract with borrow:
(A) € (A) - source byte -CY

‘A’ register is the destination, & source may
be any addressing mode

NNNNNNN



Unsigned addition: This make use of the carry flag to

detect when the result of an ADD operation is a number larger
than FF h.

00 to 255d
905d = 010111110b =5Fh
189d = 10111101b =BDh
_284d 100011100 b 11Ch

Signed addition:if unlike signed numbers are added, then it

IS not possible for the result to be larger than -128 d to +127 d,
and the result will always be correct.

Ex1l. -001d =111111110Db =FF h
+027d =00011011Db = 1Bh
+026d 100011010b =+ 026d 11Ah

NAVEEN B 15



Adding two +ve

numbers, result may exceed +128d

Ex2: +100d =01100100b =64h
+050d = 00110010b 32h
150d 010010110b =-106d 096h correct result= +22d
ov=1
Ex3: +045d =00101101b =2Dh
+075d =01001011b =4Bh
+120d 001111000b =120d 078h  OV=0 (result not exceeded)

The result of adding two —ve numbers together for a sum that
does not exceed the —ve limit.

Ex; - 030d
- 050d
- 080d

oV

=11100010b = E2h
11001110b = CEh
110110000b 1BOh

=0

NAVEEN B 16



Adding Two —ve numbers whose sum does
exceed -128d

-070d =10111010b =BAN
-070d _ =10111010b = BAh
-140d =101110100b = +116d 174h

OV= 1 (correct result= -12d)

Flags Action

Cy OV

0 0 none

0 1 compliment the sign
1 0 none

1 1 compliment the sign

NAVEEN B

17



Unsigned subtraction:

Subtraction of a larger number from a smaller number.

0150 = 00001111b =O0FOh
1000 = 01100100b = 064h
- 085¢ =110101011Db

The carry flag is setto 1 & OV=0.
2's compliment of the result = 085d.

100d = 01100100b =64h
015d = 00001111b =O0Fh
085d =001010101b =055h

C=0, OV=0 (Magnitude of the result is in true form).

NAVEEN B

18



Signed subtraction:

When numbers of like sign are subtracted

It IS Impossible for the result to exceed

positive or negative magnitude limits of

+127 or -128.

+100d =01100100b(carry flag is O before
SUBB)=64h
sub +126d =01111110b = 7Eh
- 026d =111100110b = 1E6h
cy=1, OV=0

NAVEEN B 19



Using two negative numbers
-061d =11000011b ( CY=0 before

SUBB) = C3h
Subb -116d = 10001100b = 8Ch
+055d 000110111b 037h

CY=0, OV=0

NAVEEN B 20



An overflow Is possible when subtracting
numbers of opposite sign

-099d =10011101b(cy=0 before SUBB) =9Dh

+100d =01100100b =64h
-199d =000111001b = +057d =039h
Ov=1,cy =0

Because the overflow flag is set to 1, the
result must be adjusted so that 2’s
compliment is 71d

NAVEEN B 21



+ 087d =01010111b(cy=0 before SUBB) =57h

-052d _ =11001100b = cch
+139d =110001011b =-177d =18bh
OV=CY=1

The magnitude can be interpreted as +011d

The general rule is that if the overflow flag Is
set to 1, then compliment the sign bit . The
overflow flag also signals that the result is
greater then -128d or + 127d

NAVEEN B 22



Multiple byte Arithmetic

+32767d
+00004d
+87654d
+78659d

ADDC A, source byte

NAVEEN B



1) Write a pgm to add two 16 bit numbers

CLR C

mov A, # OE7h
ADD A, # 8Dh
mov R6, A
mov A, # 3Ch
ADDC A, #3Bh
mov R7, A

NAVEEN B

24



2) Write a pgm to subtract two 16 bit numbers.

CLR C

mov A, # 62h
SUBB A, # 96h
mov R7, A
mov A, # 27h
SUBB a, # 12h
mov R6 , A

NAVEEN B 25



MUL AB [OV, CY]
(B:A) € AXxB Always Clears CY

OV =1 if Results > FF (not an error,
signals that the result is larger than 8-bit)

DIV AB
(A / B) Quotient in (A)
Reminder in (B)
Divide by 0 =2 OV =1 : Invalid result

DA A Decimal Adjust after addition

( CY flag Is set if the adjusted No. exceeds 99 BCD & reset
otherwise)

NAVEEN B 26



Example programs

1.Add the unsigned numbers found In the internal
RAM locations 25h,26h,&27h together & put the
result in RAM locations 31(MSB) & 30h(LSB)

Mov 31h,#00h

Mov A,25h for BCD numbers
ADD A,26h ............ DAA
Mov RO, A

Mov A, # 00h
ADDC A,31h
Mov 31h,A
Mov A,RO
ADD A27h ... DAA
Mov 30h,A
Mov A,#00h
ADDC A,31h
Mov 31h,A

NAVEEN B 27



2. Multiply the unsigned number in register
R3 by the unsigned number on port 2 & put
the result in external RAM locations
10h(MSB) & 11h(LSB)

Mov A,0AOh
Mov OFOh,R3
MUL AB

mov RO, #11h
Movx @RO,A
DEC RO

Mov A,0FOH
Movx @RO,A

NNNNNNN



3. Write a pgm to get a byte of hex data from
P1 & convert it to decimal.

mov A, # OFFh
mov P1, A
mov A, P1
mov B, # OAh

DIV AB

mov R/, B
mov B, # OAh
DIV AB
moVv R6, B
moVv R5, A

NAVEEN B

29



Jump & CALL instructions

* These can replace the contents of PC with a
new program address

» The difference in bytes of the present & the new
address Is called the RANGE.

There are 3 ranges:

- Relative range ( +127 bytes to -128 bytes)
- Absolute range ( 2K byte pages)

- Long range ( from 0000h to FFFF h)

NNNNNNN



Absolute range may be divided into a series of pages of
any convenient binary size such as 256bytes, 2K, 4K,
and so on....

In 8051 it has 2K page size giving a total of 32 pages.

The upper 5 bits of the PC hold the page number &
lower 11 bits hold the address with in each page.

page address (HEX)
00 0000 - O7FF
01 0800 — OFFF
02 1000 — 17FF

1F F800 — FFFF

NAVEEN B 31



BIT JUMPS

 JC radd
JNC radd

\Y

\J

\ Y

JB  bit, radd
JNB bit, radd
IBC bit, radd

(Jump If direct Bit Is set)

(Jump If direct Bit is Notset)

(Jump If direct Bit Is set &
Clear it)

NAVEEN B 32



BYTE JUMPS

« JZ radd Jump if Acc =00 ( no zero flag)
« JNZ radd
C /for Compare : D for Decrement

1. CIJNE Rn, #data, rel
Compare immediate data to Register : Jump if not equal

2. CIJNE @RI, # data, rel
Compare immediate data to indirect : Jump if not equal

3. CINE A, # data, rel
4, CINE A, direct, rel
5. DINZ Rn, rel Dec Rn : Jump if it’s not 0
6. DIJNZ direct, rel Dec direct: Jump if not O

ALL CONDITIONAL JUMPS ARE relative JUMPS

NAVEEN B

33



Unconditional Jumps

Do not test any bit or byte

JMP @ A+ DPTR Jump indirect relative to DPTR
(PC) € (A) + (DPTR)  Sources are unaltered
16 bit addition

AJMP sadd Absolute Jump within the 2K space

LIMP ladd Long Jump to anywhere in the
64K memory space

SJMP radd

NAVEEN B 34



CALLS AND SUBROUTINES

ACALL sadd

L CALL ladd
here are NO Conditional CALLS in 8051

RET Return from the subroutine
RETI Return from the Interrupt

NOP No Operation

NNNNNNN



1. Place any number in internal RAM location 3Ch and
iIncrement it until the number equals 2Ah

One: CLR C One: INC 3Ch
mov A, #2Ah mov A, #2Ah
SUBB A, 3Ch OR CJNE A, 3Ch
JZ done NOP
INC 3Ch
SJMP one

Done: NOP

NAVEEN B 36



2. A number Abh

Is placed somewhere In

external RAM between locations 0100h and
0200h. Find the address of that location and
put that address in R6(LSB) & R7(MSB).

mov 20h, #0A6h

mov DPTR
Back: INC
movX a, @

, # O0FFh
DPTR
DPTR

CJNE a, 20

N, Back

mov R7, 83h

mov R6, 82h

NAVEEN B 37



3. Find the address of the first two internal RAM locations
between 20h and 60h which contain consecutive numbers.
If so set the carry flag to 1, else clear the flag.

mov 81h, #65h
mov RO, #20h
next: mov A, @RO
Inc A
mov 1Fh, A
Inc RO
Acall Done
JNC Through
mov A, @ RO
CINE A, 1Fh, next
SETB 0OD7h
Through: Symp through
Down : CLR C
mov A, # 61h
XRL A, RO
JNZ Back
RET
Back : CPLC
RET

NAVEEN B



4. Assume that RAM location 40-44 have the
values 7D,EB,C5,5B & 3Ch respectively. Write a
program to find the sum of the values.

moVv RO, # 40h
mov R2, #5
CLR A
mov R7 A

Again: ADD A, @ RO
JNC next

NC R7

next : INC RO

DIJNZ R2, Again

NAVEEN B



5. Write a pgm to find the sum of the 10 BCD
numbers stored in RAM locations storing at 40h.

movVv RO, #40h
mov R2, #0Ah
CLR A
mov R7, A
Again: ADD A, @RO
DA A
JNC Next
NC R7
Next : INC RO
DIJNZ R2 , Again

NAVEEN B



6) Write a pgm that finds the number of 1’s in a
given byte.

mov P1,#0
mov R7, # 8
mov A, # 97h
Again: RLC A
JNC Next
INC R1
Next : DIJNZ R7, Again

/) Write a pgm to add 3 to the accumulator 10 times

mov A, #0
mov R2, # 10

Again: ADD A, # 03
DIJNZ R2, Again
mov R5, A

NAVEEN B

41



8. Find the sum of the values 79h,F5h & E2h, put the
sum in registers RO & RS5.

mov A, # 00

mov R5, A
ADD A, # 79h
JNC N1
INC R5

N1: ADD A, # OF5h
JNC N2
INC R5

N2: ADD A, # OE2h
JNC over
INC R5

over: mov RO, A

NAVEEN B 42



9. A washing machine is designed for a voltage
range of 180 - 240v. If the voltage is above 240v or
below 180v, the washing machine will shut down
by turning OFF a relay connected to P1.0. Assume
that the voltage can be read at port O in the range
0-255v. Write a pgm to implement this operation.

. ORG 100h

Input: mov PO, # OFFh
mov A, PO
SUBB A, # 180
JC off
mov A, PO
SUBB A, # 240
JNC off
SIJMP input
Off : CLR P1.0
SIJMP input

NAVEEN B

43



10. Write a pgm to separate an 8bit 2’s complement
number into magnitude & sign bit.

mov PO. #00h
mov P2, #00h
mov RO, # OFEh
mov A, RO
JB Acc.7, convert ....... Check the sign bit
mov A, RO
DBP: mov PO, A
Loop: SJMP loop
Convert: SETB P2.0
CPL A
INC A
SJMP DBP

NAVEEN B




11. Write apgm to find the square root of a number.

Program: Logic:
mov R3, # 36 RO R1  N=N-odd number
mov RO, # 00h 5 ] .
mov R1, # 01h
. 1 3 35-3=32
Loopl: CLRC
2 5 27
mov A, R3 - 7 -
SUBB A, R1
4 9 11
mov R3, A
JNC square S 11 00
mov A, RO 6 13 00-13=-13
mov PO, A

loop: SJIMP loop
Square: INC RO
mov A, R1
ADD A, #02h
mov R1, A
SIMP loop1l

NAVEEN B 45



8051 Interfacing & Applications
By Dr. Naveen B



LCD Interfacing

Liquid Crystal Displays (LCDs)

 cheap and easy way to display text

A Various configurations (1 line by 20 X char up to 8 lines X 80)
d Integrated controller

 The display has two register
< data register

<+ Command code register
1 By RS you can select register

) Data lines (DB7-DBO) used to transfer data and commands




Pin Description

Tﬁble 4-7: Pin Descriptions for LCD

E—

| pi

o g

n'Svmhnl 1/O_ Description
L L_‘r_’ss | - Ground

2 | Vee == +5V power supply
3 | VEg = -- Power supply source to
' control contrast _
4| RS | I [Registerselect: RS=0to | Qs
| . |select instruction 69
b | " lcommand register, RS = 99 r
! +1 to select data register BBy L=
| —
|5 R/W | 1 Read/write: R/W=0 for 1] Q
{0 write, R/W=] forread DWC16106A DVE 161063 DHC20281
: | DMC1605C DM 16207 Loy
i_6 . E__ _,_mb c_ R 16117 WC16230 E:;i;:ﬁ
: DMC16128 W25
7 DBO . VO |The 8-bit data bus st o mzﬁ?
| S ; X DBI LI"D B '1___.. e = ) . zm ] . nw:im1s
f 2 DB2 [IOX™ ' Fi-gum 4-34. Pin Positions for Varigus LCDs from Optrex o
10 DB3 1O ""

:._ 11" DB4 1O ""
; 12 DBS L;O -u 0
i 13: DB6 IO ""

14! DB7 ‘IO " ".,_._._.




Microcontrolle
¥

J Pinout

Alphanumeric LCD Interfacing

E

L)

<+ 8 data pins D7 - DO

% RS: Data or Command 4 E;W
Register Select

% R/W: Read or Write - DB7-DBO

% E: Enable (Latch data) 8

d RS - Register Select

LCD
controller

communications
bus

% RS = 0 - Command Register
% RS =1— Data Register

d R/W=0—> Write , R/W=1-> Read

[ E - Enable
% Used to latch the data present on the data pins.

4 DO - D7

% Bi-directional data/command pins.

/

< Alphanumeric characters are sent in ASCII format.

LCD Module




LCD Commands

[ The LCD's internal controller can accept several
commands and modify the display accordingly.
Such as:

< Clear screen
< Return home
<» Decrement/Increment cursor

 After writing to the LCD, it takes some time for it to
complete its internal operations. During this time, it
will not accept any new commands or data.

“» We need to insert time delay between any two commands or
data sent to LCD




LCD Addressing

16
Bo
Co
20
BO
20
80
co
20
80
cCa
o4
c4
40
80
CD

x 2 LCD
Bl 82 83
cCl C2 <3
x 1 LCD
g1 82 B3
x 2 LCD
81 82 B3
cCl C2 C3
x 4 LCD
B1 822 83
Cl C2 C3
a5 96 a9
DS De D7
x 2 LCD
B1 B2 83
Cl C2 C3

B4 BS5 BE through

Cd4 S5
through

through
through

through

through
through
through

chrough
through

MNote: Al data Is In hex.

93

93
O3

23
D2
AT
E7

BT
E7

Ce throudgh

B5F
CF

Figure 4-36. Cursor Addresses for Some LCDs

Table 4-9: LCD Addressing o _ _ _
I ' DB7 | DB6 | DB5S , DB4 ' DB3 __ DB2 DB1 | DBO
Linel(mip) : 1 . 0O 0o , 0 ., © 0. 0 o |
linel(max) . 1 _ . O 1 i 0 ' © 1.1 1|
Line 2 (min) 1 . 1 . 0 . 0 : 0 0o _| o 0 1
Line 2 (max) 1 11 .0 0 1 ] L




LCD Timing

o Dato
S e G
¢ tPWH 5
A SAH,

tPWH = Enable pulse width = 450 ns (minimum})

t0SW = Dota set up time = 195 ns (minimum)}

tH = Daota hold time = 10 as (minimum)

tAS = Set up time prior to E (going high) for both RS ond R/W = 140 ns (minimum)
tAH = Hold time ofter E hos come down for both RS and R/W = 10 ns (minimum}

Figure 4-37. LCD Timing




Table 4-8: LCD Cp_l_nman_!_:'l Codes

CO m m a.n d I'Cude \Command to LCD Instruction

- L{hex) Register et ]
COdeS iClear display screen )

Return home

1
2 ]
4 iDecrement cursor {s]nﬂ cursor to left} '
6 |Increment cursor (shift cursor to right)
|__ 5 _ {Shift display right
7 lShlﬂ'. display left
8
A
C

e —]

Display off, cursor off _
Display off, cursor on
Display on, cursor-off __

= amEm = W e ]

IS

'E Display on, cursoron .. ___ . _ "]
F Dlsulav on, CUrsoer blmkmg
0

14 |Shift cursor pusltl_n_n to right
18 |Shift the entire display to the left
_1C _!Shift the entire display to the right
C0 |Force cursor to beginning of 2nd line

38 |2 lines and 5x7 matnx
Note: This table is extracted from Table 4-10,




Table 4-10: List of Instructions (Courtesy of Optrex Corporation)

Code I Execution
——r : I ] Time
Instruction RS ([R'W DRT |DB6:DBS DE4 DBI DB2 DB1 DBO| Description fmax)
Clear o |0l 0|0 -0 000 0| 1 |Cleasente display and sets 1.64 ms
Digplay i _ DD RAM address O in addrezs
e . i counber.
Return o|lo|loloelo o 0 0|1 - Sets DD RAM address 0 as 1.64 ms
Home i address counter. Also returns
i ; display being shifted to original
I I I i position. DD RAM contents
H H ; _ remain unchanged.
Entry Mode 0 O [y ) ] i 0 O 1 {1/Dx| S |Sets cursor move direction and 40 us
Ssat ; | specifies shift of display. Thess

E operations are performed during

i data write and read.

Display o |l o  olo|0o!0 | 1 D! c | B |Sets ONOFF of entire display 40 s
OMN/OFF ! {D}, cursor ON/OFF (C), and

Control ! ! Iblink of cursor position

. A L o .nhum:ter [L=) 2

Cursor or 0 (1} 0 0 0 1 S| RA| — | — [Moves cursor and shifts display 40 s
Drisplay without changing DT BAM

Shift contents.

Function Set! ) o - 0 0 1 DL : ™ F | — — | Sets interface data | (DL},

. : i number c-fdlsplay himes (L) and 40us
| I : i i 1 _| character font {F) _
Set OG (1] 0o i 0 1 AGC &ECGRAIHadd:mCG 40 us
RAaM i RAM data is semt and received
Address . ____ .after this setting. |
Set DD 0 O 1 ADD Sets DD RAM address. DD 40 us
RAM FAM data is sent and veceived
| Address ; after this setting. B
Read Busy L 1 BF | AC Re=ads Busy flag (BF) 40
Flag & ! ’ indicating ?u operation K
Address ' | i is being performed and reads
— | — __ address counter contents.

Write Drata 1 0 Write Data Writes data mto DD FLAM or i A0 us
to TG or CG RAM.

ResdData | 1 | 1] Read Data Reads data from DD RAM or | S0 s
from CG or | 0 1

DD RAM | L CG RAM. |




Also use RS=0, to check the busy flag

bit to see if the LCD is ready to receive
information

1Busy flag is D7

JdWhen R/W=1 & RS=0, D7=1(busy flag),
the LCD is busy taking care of internal
operations and will not accept any new
information.

dWhen D7=0, LCD is ready to receive
new information




Interfacing LCD with 8051

8051

P3.4

P3.5

P3.3

P1.7-P1.0 |«

LMO15

» RW

" RS

t D7-DO0




Example

LCD
b0 Vee b
oo —> 10K
07 POT
RS R E 'S

00 0082‘5_5

M

W -—W Py

R —RD

0 —a  PEO

At —ia PBI
P Decoding -

i . - oo m
N — —q b il
Circuttry :
AN — L

Figure 4-35. 8255-t0-PC Interface Connection to LCD




Sending commands and data to LCDs with a time delay

;calls atime delay before sending next data/command
; P1.0-P1.7 are connected to LCD data pins DO - D7
;P2.0 is connected to RS pin of LCD

;P2.11is connected to R/W pin of LCD

;P2.2is connected to E pin pf LCD

org Oh

Mov A, #38h - init. LCD 2 lines , 5x7 matrix
ACALL COMNWRT . call command subroutine
ACALL DELAY ; give LCD some time

Mov A , #0Eh ; display on , cursur on
ACALL COMNWRT . call command subroutine
ACALL DELAY ; give LCD some time

Mov A, #01 - clear LCD

ACALL COMNWRT . call command subroutine
ACALL DELAY ; give LCD some time

Mov A, # 06h ; shift cursor right

ACALL COMNWRT - call command subroutine




ACALL DELAY
Mov A, # 84h

ACALL COMNWRT

ACALL DELAY

Mov A #N’

ACALL DATAWRT

ACALL DELAY

MOV A, # ‘0’

ACALL DATAWRT
AGAIN: SIMP AGAIN
COMNWRT :

Mov P1, A

CLR P2.0

CLR P2.1

SETB P2.2

; give LCD some time
,cursor at line 1, pos. 4
; call command subroutine
; give LCD some time

; display letter N

; call display subroutine
; give LCD some time

, display letter o

; call display subroutine
; stay here

; send command to LCD
, copy reg A to portl

; RS=9 for command

; RIW =0 for write

; E=1 for high pulse




ACALL DELAY ; give LCD some time

CLR P2.2 ; E=0 for H — L pulse
RET

DATAWRT: ; write data to LCD
Mov P1, a ; copy reg A to Portl
SETB P2.0 ; Rs=1 for data
CLR P2.1 ;R/w=0 for write
SETB P2.2 ; E-1 for high pulse
ACALL DELAY ; give LCD some time
CLR P2.2 ; E=0 for H — L pilse
RET

DELAY: Mov R3, #50 ; 50 or higher for fast CPU’s
HEREZ2 :Mov R4 , #255 ; R4=255
HERE: DJNZ R4, HERE ; stay untill R4 become O
DIJNZ R3 , HEREZ2
RET
END




Sending code or data to the LCD with checking busy flag

, check busy flag before sending data ,
command to LCD

, P1=data pin, P2.0=Rs , P2.1=R/W, P2.2=E pins

Mov A, #38h nit. LCD 2 lines , 5x7 matrix
ACALL COMMAND ' Issue command

Mov A , #0Eh : LCD on, cursor on

ACALL COMMAND ' Issue command

Mov A, #01 ' clear LCD command




ACALL COMMAND : I1ssue command

Mov A, # 06h ; shift cursor right
ACALL COMMAND ; issue command
Mov A, #84h  ;cursoratline 1, pos. 6
ACALL COMMAND ; issue command
Mov A #N’ , display letter N




ACALL DATA_DISPLAY

MOV A, # 0’ , display letter o
ACALL DATA DISPLAY
HERE: SJMP HERE ; stay HERE
Command: ACALL READY :IsLCD READY?
Mov P1, A :issue command cod

CLR P2.0 :RS=0for command
CLR P2.1 :R/W =0 to write to LCD
SETB P2.2 ; E=1forH-L pulse
CLR P2.2 :E=0, latchin
RET

DATA DISPLAY:
ACALL DELAY ;is LCd ready?
Mov P1, A ;Issue data




SETB P2.0 - RS =1 for data

CLR P2.1 ; RIW=0 to write data to LCD
SETB P2.2 ; E=1 for H — L pulse
ACALL DELAY ; give LCD some time
CLR P2.2 ; E=0, latch in
RET

READY: SETB P1.7 ; make P1.7 input port
CLR P2.0 ; Rs=0 access command reg
SETB P2.1 ; RAIW=1 read command reg

;read command reg and check busy flag

BACK: CLR P2.2 ; E=0 for L — h pulse
ACALL DELAY ; give LCD some time
SETB P2.2 ; E=1 L — H pulse
JB P1.7 , BACK ; stay until busy flag =0
RET

END




Keyboard interfacing

16 keys arranged as a 4X4 matrix
d Place a 0 on RO port (i/o Port) f

d Read C port (o/p Port) = = = =

1 C port is connected to VCé;,—,J f— ?—H r?_“
ie. port is high B | A | o | 8_

, ] I A B

d If thereis a O bit 71 6 | 5 | 4
then the button I e I e N
at the column/row r?ﬁ 2| Al o)
) ) [ [ [
intersection has
been pressed.

 Otherwise, try next row
[ Repeat constantly

R1
R2
R3

R4

Cl
C2
C3

C4




DAC Interfacing

Two methods:
a) Binary weighted
b) R - 2R ladder-.....higher degree of precision

The number of data bit inputs decides the
resolution of the DAC since the number of
analog output levels is equal to 2"

" is the data inputs, common ones are 8, 10 and
12 bits




Example programs




Stepper motor interfacing

] A stepper motor is a widely used device
that translates electrical pulses into
mechanical movement used for position
control.

dThe most common stepper motors have four
stator windings that are paired with a
center tapped common.

Conventional motor shaft runs freely, the
stepper motor shaft moves in a fixed
repeatable increment, which allows move it
to a precise position.




dThe step angle is the minimum degree of
rotation associated with a single step.

table 17 .4
Steps per second =
(rpm x steps per revolution)/60

EXAMPLE 17.3




Sensor Interfacing

[ Transducers convert physical data such as
temperature, light intensity and speed to electrical
signals.

] Depends on the transducer, the o/p produced is in
the form of voltage, current, resistance or
capacitance

Temperature sensors

Temperature is converted into electrical signals using
a transducer called thermistor.

A thermistor responds to temperature change by
changing resistance

TABLE: 13.8




JResponse is not linear

dComplexity associated with writing a
software for nonlinear devices.

1 This leads to a linear sensors like LM34 &
LM35

Converting the common transducers o/p like
voltage, current, capacitance, resistance to
voltage in order to send i/p to an A- to D
converter called Signal Conditioning.

Figure 13.21

Example 13.1




digital

ADC Interfacing

In this physical world everything is analog.
1 A/D converters translate analog signal to

dso that MC can read & process them.
1Step size is the smallest change that can

be discerned by an ADC

1Conversion time is the time it takes the
ADC to convert the analog i/p to a digital

number.




8051
Interrupts

BY Dr. Naveen B



Definition of Tnterrupt

Event that disrupts the
normal execution of a program
and causes the execution of
special instructions



Interrupts VS polling

A single MC can serve several devices. There
are two ways to do it: a) polling

b) Interrupt

Used in the previous chapter

JNB TF, target -> polling method ( wait until the
timer rolls over, & we could not do anything
else)




Steps Iin executing an interrupt

Finish current instruction and saves the PC on
stack.

Jumps to a fixed location in memory depend on
type of interrupt

Starts to execute the interrupt service routine
until RETI (return from interrupt)

Upon executing the RETI the microcontroller
returns to the place where it was interrupted.
Get pop PC from stack



Interrupt Overheads

Interrupt arrives

Complete current instruction

Save essential register information
Vector to ISR

Save additional register information

Execute body of ISR

Restore other register information

Return from interrupt and restore essential
registers

Resume task

A

Interrupt
Latency

Interrupt
Termination



Interrupt Sources

Original 8051 has 6 sources of
Interrupts

— Reset

— Timer O overflow

— Timer 1 overflow

— External Interrupt O

— External Interrupt 1

— Serial Port events (buffer full, buffer empty,
etc)



Interrupt Vectors

Each interrupt has a specific place In code
memory where program execution (interrupt
service routine) begins.

External Interrupt O: 0003h

Timer 0 overflow: O0O0Bh | Note: that there are
External Interrupt 1: 0013h only 8 memory

locations between
Timer 1 overflow: OO01Bh  vectors.

Serial : 0023h




ISRs and Main Program in 8051

SJMP main
ORG O3H

ljmp intOsr

ORG OBH

l1jmp tOsr

ORG 13H

ljmp intlsr

ORG 1BH

ljmp tlsr

ORG 23H

ljmp serialsr

ORG 30H
main: ..

END



Figure 23. IE: Interrupt Enable Register

MSE) L=B)
| ea | — ET2| ES | ET1 | EX1 | ETO | ExO |
Enablas bit = 1- anaboles tha ir';tarru |:|t.- - - -
Enabla bit = 0 disablas i
Symbol Po=ition Functicn

=LY IE7F Global anablafdisable. Dizsablas all
imtarmrupt=. If EA = 0, no imtarrupt will ba
acknowledgad. If E&A = 1, sach intaermupt
sourca is individually snablad or disablaed
by sattmg or claaring its anabla bit

— IE S Undsfined/rassrvysd.

ET2 IES Timear 2 Interrupt anabla bit (ATESCTS2).
ES =4 Serial Port Imtarrupt amakla Git.

ET1 IE 3 Timsar 1 Imterrupt 2nabla bit

ExA1 =2 Extarnal Intermupt 1 anabls bit.

ETO IE.1 Timsar O Imterrupt 2nabla bit

EXO | = Extarnal Intermupt O anabla bit.

Uscr software should never write 1= to unimplamantad bits, since thay
may e usad in fulurs AT389 Saras products.




Enabling and disabling an interrupt

by bit operation
dRecommended in the middle of program

SETB
SETB
SETB
SETB
SETB
SETB

EA
ETO
ET1
EXO
EX1
ES

SETB
SETB
SETB
SETB
SETB
SETB

IE.
IE.
IE.
IE.
IE.
IE.

7

= Do wRr

by mov instruction

dRecommended in the first of program

MOV IE, #10010110B

;Enable
;Enable
;Enable
;Enable
;Enable
;Enable

All
TimerO ovrf
Timerl ovrf
INTO
INT1
Serial port



Programming timer interrupts

JNB TF , target --->polling method

In interrupt method, if the timer interrupt in the IE
register is enabled, whenever the timer rolls
over, TF is raised , & the microcontroller is
Interrupted in whatever it is doing , & jump to
ISR.

Place all the initialization codes in memory
starting at 30h, because to avoid using the
memory space allocated to the interrupt vector
table.




Example
* A 10khz square wave with 50% duty cycle

ORG O ;Reset entry point

LJMP MAIN ;Jump above interrupt

ORG O0OOBH ;Timer 0 interrupt vector
TOISR:CPL P1.0 ; Toggle port bit

RETI ;Return from ISR to Main program

ORG 0030H ;Main Program entry point

MAIN:MOV TMOD, #02H ;Timer 0, mode 2
MOV THO,#50 ;50 us delay

SETB TRO ;Start timer
MOV 1IE, #82H ;Enable timer 0 interrupt
SJMP $ ;Do nothing just wait

END



Examples

Write a program that continuously gets 8bit data from PO sends it to P1 while
simultaneously creating a square wave of 200us period on pin p2.1.Use
timer O to create the square wave.

Org 0000
LIMP MAIN
Org O0O0OBH ;Timer O interrupt vector table
CPL P2.1
RETI
Org 0030h

MAIN: Mov TMOD , #02h
Mov PO, #0FFh
Mov THO, # -92
Mov IE ,#82h
SETB TRO

BACK: Mov A, PO
Mov P1, A
SIJMP BACK
END




Write a program to generate a square wave of 50Hz frequency on pinP1.2

Org O
LIMP main
Org 000Bh
CPL P1.2
Mov TLO, #00
Mov THO, # ODCh
RETI

Org 30h
main: Mov TMOD , #00000001B
Mov TLO ,#00
Mov THO ,# ODCh
Mov I|E, # 82h
SETB TRO
Here: SIJMP Here
END




Programming external hardware interrupts

* The two external hardware interrupts are ---
INTO(P3.2) and INT1(P3.3)
« Two types of activation
-> |level triggered ( default mode)
-> edge triggered

In the level triggered mode , INTO & INT1 pins are
normally high & if a low level signal is applied to
them , it triggers the interrupt.

TCON register selects edge trigger or level
trigger, bit O for ITO & bit 2 for IT1

TCON.O=1 -—->edge triggered & O for level
triggered ,by default it is a level triggered.




External interrupt type control

* By low nibble of Timer control register TCON

« |EO (IE1): External interrupt 0(1) edge flag.
— set by CPU when external interrupt edge (H-to-L) is detected.

— Does not affected by H-to-L while ISR is executed (no int on int)
— Cleared by CPU when RETI executed.
— does not latch low-level triggered interrupt

* ITO (IT1): interrupt O (1) type control bit.

— Set/cleared by software
— IT=1 edge trigger
(MSB) 1T=0 low-level trigger

(LSB)

TEL1 I TR1 ] TEO | TRO

IE1 | IT1 | IEO | ITO

Timer 1 TimerQ

for Interrupt




External Interrupts

Level-triggered (default)

INTO
(Pin 3.2) 0 v o 0003
1 o IEO (TCON.3)
t i -
Edge-triggered
Level-triggered (default)
INT1
(Pin 3.3) 0 v [>o 0013
IT1 >
14 IE1 (TCON.3)

Edge-triggered

L




Example of external interrupt

8031

| INTO

HOT

P1.7 " Fumnace on

COLD INTI

(b)

FIGURE 6-5
Furnace example. (a) Hardware connections (b) Timing.



Interrupt Priorities

What if two interrupt sources interrupt at the same
time?

The interrupt with the highest PRIORITY gets serviced
first.

All interrupts have a power on default priority order.
1. External interrupt O (INTO)

2. Timer interruptO (TFO)

3. External interrupt 1 (INT1)

4. Timer interruptl (TF1)

5. Serial communication (RI+TI)

Priority can also be set to “high” or “low” by IP reqg.



Interrupt Priorities (IP) Register

PT2 PS PT1 PX1 PTO P X0

P/
P.0:
P.5:
P .4
P.3:
P.2:
P.1:
P.0:

reserved

reserved

timer 2 interrupt priority bit(8052 only)
serial port interrupt priority bit

timer 1 interrupt priority bit

external interrupt 1 priority bit

timer O interrupt priority bit

external interrupt O priority bit




Interrupt Priorities Example

PT2 PS PT1 PX1 PTO PX0

e MOV IP , #00000100B or SETB IP.2gives

priority order
1. Intl
2. IntO
3. TimerO
4. Timerl
5. Serial

« MOV IP , #00001100B gives priority order

1. Intl
Timerl
IntO
TimerO
Serial

o~ 0D



Interrupt inside an interrupt

PT2 PS PT1 PX1 PTO PX0

* A high-priority interrupt can interrupt a low-
priority interrupt

« All interrupt are latched internally

* Low-priority interrupt wait until 8051 has
finished servicing the high-priority interrupt




Assume that the INTI pin is connected to a switch that is normally
high. Whenever it goes low, it should turn on LED. The LED is
connected to P1.3 & is normally off. When it is turned on it should
stay on for a fraction of a second. As long as the switch is
pressed low, the LED should stay on.

Org 0000h
LIJIMP main
Org 0013h
SETB P1.3 - INTI ISR
Mov R3, #255 . load counter
Back: DJNZ R3, Back
CLR P1.3
RETI
Org 30h
Main: Mov IE ,# 10000100B
Here: SJMP Here
END

Upon reset the 8051 makes INTO & INT1 low level triggered
interrupts. To make them edge triggered interrupts, we must
program the bits of the TCON reqister.




Assuming that pin 3.3 (INTI) is connected to a pulse generator, write
a program in which the falling edge of the pulse will send a high
to P1.3, which is connected to LED.

Org 0000h
LIJIMP main
Org 0013h
SETB P1.3
Mov R3 ,#255

Back: DJNZ R3, Back

CLR pl1.3
RET

Org 30h
Main: SETB TCON .2

Mov IE, #10000100B
Here: SJMP , Here

END




Difference between RET and RETI

Both perform the same actions of popping off

the top two bytes of the stack Into the
program counter and making the 8051 return
to where 1t left off, however RETI also
performs clearing the interrupt in service flag,
Indicating that the servicing of the interrupt Is
over & the 8051 now can accept a hew
Interrupt on that pin.

If RET Is used instead of RETI , it simply block

any new interrupt on that pin, It indicates that
the Interrupt is still being serviced.




Programming the serial
communication interrupt

1.Write a program in which the 8051 reads data from P1 and writes it
to P2 continuously while giving a copy of Po to the serial COM
port to be transferred serially. Assume that XTAL=11.0592MHz.
Set the baud rate at 9600.

org O
LIMP MAIN

org 23h
LIMP SERIAL ; jump to serial interrupt ISR
Org 30h
MAIN: Mov P1, #0FFh ; make P1 an input port
Mov TMOD , #20h ; timer 1, mode 2(auto-reload)
Mov TH1 , #0FDh  ; 9600 baud rate
Mov SCON ,# 50h ; 8bit, 1 stop , REN enabled




Mov IE , #10010000B ; enabled serial interrupt

SETB TR1 , Sstart timer 1
BACK: Mov A, P1 , read data from portl
Mov SBUF A , Give a copy to SBUF
Mov P2, A , send it to P2
SIMP BACK , stay in loop indefinitely
Org 100h

SERIAL: JB TI, TRANS ;jump if T1is high
Mov A , SBUF : otherwise due to receive

CLR RI - clear RI since CPU does not
RETI ' return from ISR

TRANS: CLR TI - clear Tl since CPU does not
RETI ' return from ISR

END




2. Write a program in which the 8051 gates data from P1
and sends it to P2 continuously while incoming data
from the serial port is send to PO .Assume that XTAL
=11.0592MHz. Set the baud rate at 9600.

MAIN :

Org 0

LIMP MAIN

Org 23h

LIMP SERIAL
Org 30h

Mov P1 , #0FFh
Mov TMOD , #20h
Mov TH1. #0FDh
Mov SCON , #50h
Mov IE, #10010000B
SETB TR1

; jump to serial ISR

; make P1 an input port
; timer 1, mode 2(auto-reload)
; 9600 baud rate
; 8-bit , 1 stop, REN enabled
; enable serial interrupt
; start timer 1




BACK: Mov A, P1 ; read data from port 1

SERIAL:

TRANS:

Mov P2, A ; send it to P2

SIJMP BACK ; stay in loop indefinitely
Org 100h

JB T1, TRANS ; jumpif T1is high

Mov A, SBUF ; otherwise due to receive

Mov PO, A , send incoming data to PO
CLR RI . clear RI since CPU doesn’t
RETI ' return from ISR

CLR TI ; clear Tl since CPU doesn’t
RETI ' return from ISR

END




3. Write a program using interrupts to do the
following

(a) Recelve data serially and send it to p0,

(b) Have port P1 read and transmitted serially,
and a copy given to P2,

(c) Make Timer O generate a square wave of
5KHz frequency on PO.1,

Assume that XTAL =11.0592MHz .Set the baud
rate at 4800




MAIN :

Org O
LIMP MAIN
Org 000Bh
CPL PO.1
RETI
Org 23h
LIMP SERIAL

Org 30h
Mov P1, #0FFh
Mov TMOD , #22h
Mov TH1, #0F6h
Mov SCON , #50h
Mov THO , # -92h
Mov IE , # 10010010 B

ISR for timer O
; toggle PO.1
' return from ISR

: jump to serial int.ISR

; make P1 an input port
; timer 0 & 1, mode 2, auto_reload
; 4800 baud rate
; 8-bit , 1 stop , REN enabled
; for 5 KHz wave
; enable serial , timer 0 int




SETB TR1 - start timer 1

TRO : START TIMER O
BACK: Mov A, P1 ; read data from port 1
Mov SBUF, A , give a copy to SBUF
Mov P2, A . write 1t to P2
SIJMP BACK
org 100h
SERIAL : JB Tl, TRANS
Mov A, SBUF
Mov PO, A - send serial data to PO
CLR RI . clear RI since CPU does not
RETI - return from ISR
TRANS: CLR TI . clear Tl since CPU does not
RETI . return from ISR

END




Serial example(2)

An example for serial port interrupt

ORG 000O0OH
LJMP MAIN
;jump to serial ISR
ORG 23H
LJMP ISR
;maln program
ORG 30H
;1l-initializtion
MAIN: MOV PO, #OFFH ;ISR for reading from serial port
MOV TMOD, #20H ISR: PUSH ACC
MOV TH1,#-13 JB TI, TRANSM
MOV A, SBUF
MOV SCON, #50H MOV D2 A
MOV IE,#90H CLR RI
;2-begin SJMP ISREND
SETB TR1 TRANSM: CLR TI
AGAIN: MOV A,PO ISREND: POP ACC
RETI
MOV P1,A END

SJMP AGAIN




an example for serial port interrupt

;for transmitting

0RG 00008 Serial example(3)

LJMP MAIN
;jump to serial ISR
ORG 23H
LJMP ISR
;main program
ORG 30H ;ISR for receive from serial to pO
;initializtion ;transmitting to serial from pl
MAIN: MOV PO, #0FFH ISR:  JB TI,TRANSM
MOV A, SBUF
MOV TMOD, #20H mov PO,A
MOV TH1,#-13 CLR RI
MOV SCON, #50H RETI
TRANSM: MOV A,P1l
MOV IE,#QOH MOV SBUF,A
; 2—-begin CLR TI
SETB TR1 RETI
END

AGAIN: SJMP AGAIN




Serial example(4)

ORG 0000
;Initialize serial port & timer
INIT: MOV SCON, #52H ;Serial port mode 1
MOV TMOD, #20H ;Timer 1, mode 2
MOV TH1,#-13 ;Reload count for 2400 baud
SETB TR1 ;Start timer 1

;ymove character 'B' to accumulator for transmitting
MOV A,#'B'

;Transmit characters by serial port

OUTCHR: MOV C,P ; Put parity bit in C flag
CPL C ;Change to odd parity
MOV ACC.7,C ;Add to character code

END




AGAIN:JNB TI,AGAIN ;Buffer empty? no:check again
CLR TI ;Yes:clear falg and
MOV SBUF,A ; send character
CLR ACC.7 ;Strip off parity bit
JMP $




MICROCONTROLLER AND
APPLICATIONS ( 18EC 42)

Prepared by
Dr. Naveen B



CHAPTER 1

Microcontroller



* Introduction (Historical Background)
» Microprocessors & Microcontrollers

* A Microcontrollers Survey

 Development Systems for Microcontrollers
* RISC & CISC CPU Architectures

 Harvard & VVon-Neumann CPU architecture



Historical Background

 Blaise Pascal invented a calculator in 1642 that was
constructed of gears and wheels. Each gear
contained 10 teeth.

» Charles Babbage began to create what he called his

Analytical Engine. This machine was to generate
navigation tables for the Royal Navy.

 The engine stored 1000 20-digit decimal numbers and
variable program.



The development of transistor in 1948 at Bell Labs. In 1958
Invent the integrated circuit by Jack Kilby of Texas Instruments.
The IC led to the development of digital integrated circuits
(RTL, or resistor-to-transistor logic) in the 1960s and the first
microprocessor at Intel Corporation in 1971.

Marcian E. Hoff, developed the 4004 microprocessor.

Saturday, May 1, 2021



* [ntel introduced microprocessors in 1971

* 4-bit microprocessors
»> 4004
» 4040

It addressed a mere 4096 4-bit wide memory locations.
The problems with 4004 are :
Speed, width, Memory size
* 8-bIt microprocessors
» 8008
» 8080
» 8085
« In 1973, Intel corporation released the 8008, an extended 8-bit version
of the 4040 microprocessor.
« The memory size are 16K bytes

e The instructions are 48



Intel introduced the 8080 microprocessor in 1973. The first modern 8-bit
MICroprocessors.

Motorola Corporation introduced its MC6800 microprocessor .

8080 address memory with 64K bytes than the 8008 with 16K bytes.

In 1977, Intel corporation introduced an update version of the 8080—the
8085. the last 8-bit microprocessor developed by Intel. The main
advantages of the 8085 were its internal clock generator, internal
system controller, and higher clock frequency.

* 16-bit processors
» 8086 Introduced in 1978
— 20-bit address bus, 16-bit data bus
» 8088 Is a less expensive version
— Uses 8-bit data bus
» Can address up to 4 segments of 64 KB
» Referred to as the real mode



8086 and 8088 addressed 1M bytes of memory.
A small 4- or 6-byte Instruction cache or queue that
prefetched a few instructions before they were executed.

Saturday, May 1, 2021



* 80186
» A faster version of 8086
» 16-bit data bus and 20-bit address bus
» Improved instruction set

% 80286 was Introduced in 1982
» 24-bit address bus
» 16 MB address space
» Enhanced with memory protection capabilities
» Introduced protected mode

— Segmentation in protected mode is different from the real
mode



* 80386 was introduced in 1985
» First 32-bit processor
» 32-bit data bus and 32-bit address bus
» 4 GB address space
» Segmentation can be turned off (flat model)
» Introduced paging

* 80486 was introduced in 1989
» Improved version of 386

» Combined coprocessor functions for performing floating-point
arithmetic
» Added parallel execution capability to instruction decode and
execution units
— Achieves scalar execution of 1 instruction/clock

» Later versions introduced energy savings for laptops



Pentium (80586) was introduced in 1993
» Similar to 486 but with 64-bit data bus
» Wider internal data paths

— 128- and 256-bit wide
» Added second execution pipeline
— Superscalar performance
— Two instructions/clock
» Doubled on-chip L1 cache
— 8 KB data
— 8 KB instruction
» Added branch prediction



* Pentium Pro was introduced in 1995
» Three-way superscalar
— 3 instructions/clock
» 36-bit address bus
— 64 GB address space
» Introduced dynamic execution
— Out-of-order execution
— Speculative execution
» In addition to the L1 cache
— Has 256 KB L2 cache



% Pentium Il was introduced in 1997

» Introduced multimedia (MMX) instructions

» Doubled on-chip L1 cache
— 16 KB data
— 16 KB instruction

» Introduced comprehensive power management features
— Sleep
— Deep sleep

» In addition to the L1 cache
— Has 256 KB L2 cache

* Pentium III, Pentium IV,...



Itanium processor

» RISC design
— Previous designs were CISC

» 64-bit processor

» Uses 64-bit address bus

» 128-bit data bus

» Introduced several advanced features
— Speculative execution
— Predication to eliminate branches
— Branch prediction



Pentium Registers

» Four 32-bit registers can be used as
% Four 32-bit register (EAX, EBX, ECX, EDX)
* Four 16-bit register (AX, BX, CX, DX)
+ Eight 8-bit register (AH, AL, BH, BL, CH, CL, DH, DL)

« Some registers have special use
* ECX for count in loop instructions

16-bit registers

|

AX Accumulator

32-bit registers

BX Base
CX Counter
| DX Data




Pentium Registers (cont’d)

« Two Index registers
* 16- or 32-bit registers

* Used In string Instructions

» Source (SI) and
destination (DI)

* Can be used as general-
purpose data registers

« Two pointer registers
* 16- or 32-bit registers

* Used exclusively to
maintain the stack

Index registers
16 15

Source index

Destination index

Pointer registers

31 16 15 0

| | e | ek
e | | w ] eepne



Pentium Registers (cont’d)

Flags register

Status flags

CF = Carry flag
PF = Parity flag

AF = Auxiliary carry flag

ZF = Zero flag
SF = Sign flag

OF = Overflow flag

N
EFLLAGS

Control flags
DF = Direction flag

Instruction pointer
16 15

System flags

TF = Trap flag

IF = Interrupt flag

TIOPL. = /O privilege level

NT = Nested task

RF = Resume flag

VM = Virtual 8086 mode

AC = Alignment check

VIF = Virtual interrupt flag
VIP = Virtual interrupt pending
ID = 1D flag




Protected Mode Architecture

 Pentium supports two modes

* Protected mode
» 32-bit mode
» Supports segmentation and paging

* Real mode
» Uses 16-bit addresses
» Runs 8086 programs
» Pentium acts as a faster 8086



Intel and Motorola microprocessors

TABLE 1-2 Many modaern Intel and Motoarola milaoroprocossors

Marltactures Part Oatear Bus Wiclth Memory Sileo

Bno4an 2 ) 2K Intaernal
Bos 8 8K Intarnal
BOBGA L2 GaK

808G 16 1M\

8088 [2] 1M

02000 16 BK Intarmal
BO1T8206 10 LY

BO188 1M

B0O251 16K Intarmnnl
80280 16M

B803BGEX Gam

803860D X < a4C

BO3BGSL az2m
BOJZBGSLC O2M + TK canche
soasasx - 16M
BOABSBDX/DX2 az ac BK cache

'
BOABGS X " 45 v BK cnche
8B0O48B610X4 4€5 » 16K anahe
'
'

Irtesl

Pantium 4G 10K cache
Pantium Oveardrive (P247) » ACH 16K cache
(replaces BO4ABE)

FPantium Pro procassor G4CG + 16K L

cacho « 250K L2 cache

G4C + 32K L1 cache

512K L2 cache

FPoantium |l Xeon S GAG + 32K L1 cache

512K or 1M L2 cache

Fantium I, Peantium 4 684G + 22K LY cache +

256K L2 cache

FPantium |

Motorola GH00 G4
GRosn s 2K
anoe GaK
S8000
680080
GHO08ID
aGno1o0

aBo2o
GBaoO30 A4 » 2856 cache

G040 AC 4 BK anche

G8050 Proposead, but naver
relonnoad

GHoOGoO 40 ¢ 16K caache

PowarPC ©NAVEEN_B A + 32K caaghe




YVVYVVVVVVYVYVYVYYVYVVYVYYVYY

Appliances

Intercom
Telephones

Security systems
Garage door openers
Answering Machine
Fax machine
Exercise Equipments
Washing Machine
Home Computers
TVs

Cable TV Tuner
VCR

Camcorder

Remote Controls

Applications

» Engine Control

» Alr Bag

» Transmission Control

» Automobile Instrumentation
» Entertainment

» Keyless Entry

> Laser Printer

» Copier

> Color Printer

» Paging



Introduction
General-purpose microprocessor

« CPU for Computers
 No RAM, ROM, I/O on CPU chip itself
« Example : Intel’s x86, Motorola’s 680x0

CPU

General- Serial Q
Purpose RAM BRROM /0 Timer @8 Port
Micro- Port

Processor




Microcontroller

« Asmaller computer
* On-chip RAM, ROM, I/O ports...
« Example : Motorola’s 6811, Intel’s 8051, Zilog’s Z8 and PIC 16X

1/ |+ Serial
Tlmer COM




Microprocessor

CPU is stand-alone, RAM, ROM,
I/O, timer are separate

designer can decide on the amount of

ROM, RAM and I/O ports.
Requires more hardware
expansive

general-purpose

Less multifunctional pins

1 or 2 bit handling Inst.

Single memory map for Data & Code

Many instructions to move data

between memory & CPU
Saturday, May 1, 2021

Microprocessor vs. Microcontroller

Microcontroller

CPU, RAM, ROM, I/O and timer are
all on a single chip

fix amount of on-chip ROM, RAM,
I/O ports

Requires less hardware

for applications in which cost, power
and space are critical

single-purpose
More multifunctional pins
More bit handling inst.

separate memory map for Data &
Code

1 or 2 instructions



Embedded System

Embedded system means the processor is that

application.

An embedded product uses a microprocessor or microcontroller to
only.

In an embedded system, there is only one application software that
Is typically

Example : printer, keyboard, video game player



Three criteria in Choosing a Microcontroller

1. meeting the computing needs of the task efficiently and cost
effectively

» speed, the amount of ROM and RAM, the number of 1/O ports
and timers, size, packaging, power consumption

« easy to upgrade
e  cost per unit
2. availability of software development tools

« assemblers, debuggers, C compilers, emulator, simulator,
technical support

3. wide availability and reliable sources of the microcontrollers.



Block Diagram

TimeriCouner
- _ Counter
‘W

PO P1 P2 P3 TxD RXxD
Address/Data

External interrupts

Saturday, May 1, 2021



Comparison of the 8051 Family Members

Feature 8051 8052 8031
ROM (program space in bytes) 4K 8K 0],
RAM (bytes) 128 256 128
Timers 2 3 2
1/O pins 32 32 32
Serial port 1 1 1

Interrupt sources §) 8 6



A MICROCONTROLLER SURVAY

Data Bits

4 bit MicroController

8 bit MicroController

16 bit MicroController

32 bit MicroController

MicroController
IC

MCS40 (4004)

8051 (MCS 51)

80C196 (MCS96
Family)

80960 (Floating point
Unit, 512

Byte Instruction
Cache)

RAM /ROM

32 byte RAM, 512 byteROM

128 byte RAM, 4 K ROM

256 byte RAM, 8 K ROM



DEVELOPMENT SYSTEMS FOR
MICROCONTROLLERS

The package of hardware & software will allow the
MC to be programmed & connected to the
application is called development system.

 Trained personnel must be available

A device capable of programming EPROMSs must
be available

 Software Is needed along with PC to host it



RISC & CISC CPU ARCHITECTURES

« A CISC processor has most of the following properties:
e Richer instruction set, some simple, some very complex
e [nstructions generally take more than 1 clock to execute
e [nstructions of a variable size

¢ Instructions interface with memory in multiple mechanisms
with complex addressing modes

e Microcode control

e No pipelining

» Work well with simpler compiler
«  Segmented memory model

 Few registers

«  Crappy floating point performance
«  Upward compatibility within a family



* A RISC processor has most of the following properties:
e Simple primitive instructions and addressing modes
e Instructions execute in one clock cycle
e Uniformed length instructions and fixed instruction format

e Instructions interface with memory via fixed mechanisms
(load/store)

e Hardwired control
e Pipelining
* |nstruction set is orthogonal (little overlapping of instruction
functionality)
* Complexity pushed to the compiler
* Superscalar and out-of-order execution
* Large number of registers

* Fast floating point performance



Comparison between RISC & CISC

Simple instructions taking one cycle
Few instructions only
Simple addressing modes

Few addressing modes & most
Instructions have register addressing
mode

Very few instructions refer memory
Instructions are executed by hardware
Fixed instruction format

Highly pipelined

Complexity is in the compiler

More registers

Complex instructions taking many cycle
Many instructions

Complex addressing modes

Many addressing modes

Most of the instructions may refer
memory

Executed by micro program
Variable instruction format

Not pipelined

Complexity is in the micro program
Few registers



Harvard Vs Von-Neumann
There are two ways in which the computer memory used
for storing instructions may be organized.

Harvard



\Von Neumann

Program & Data Memory In the same block



In a von Neumann architecture, the instruction has first to be fetched, using the program
counter; then it can be executed. Since when the instruction is executed, it may also read or
write data, you often cannot load one instruction and execute another at the same time. So
the basic sequence in a von-Neuman architecture system is

fetch
execute
fetch
execute

This means that such a system may be slower. On the other hand, it has great advantages of
flexibility, and the efficient use of memory caches can do a great deal to mitigate the
apparent slowness of the architecture.

For example, what happens when you load up a game from disk into your computer? The
program is stored as data, for example on a disc. You have to read that data, and store it in
the memory of your computer. When you have done that, you can treat it as a program, (i.e.
as a set of instructions) and run (execute) it. With a von Neumann architecture, since you
have only one memory system, there is no problem; but with a Harvard architecture, you
cannot do it - you cannot write data to the program memory - a special system is required to
load the program into program memory.



The Harvard architecture also prevents you reading data from the program
memory. For example, you may wish to include in your program tables of
data, which can be used by the program; for example, messages to be
displayed on the screen, or some kind of "look-up table". In a von Neumann
architecture there is no problem; you can just store the table along with your
program, and read it when you want to, because an instruction can read data
from any address; in a Harvard architecture, data stored in the program
memory cannot be read as data in the data memory. There are ways to get
round this problem.

A von Neumann architecture is used for most computers; it allows the storing
and running of different programs. A Harvard architecture is more appropriate
for a microcontroller; in use, it will only ever run one program which will be
stored in the ROM in its program memory. Moreover, the extra speed without
the complexity of a sophisticated cache controller will be useful in some
circumstances.



8051 Serial Communication
By Dr. Naveen B



Advantages of serial communication over
parallel communication

- Single Data line Is used
- Cheaper
- Communicate over a longer distance

Modem is used to convert data from 0O's & 1’s to
audio signals and vice-versa

Parallel in serial out & serial in parallel out registers
are used.



8051 and PC

 The 8051 module connects to PC by using RS232.

 RS232 is a protocol which supports half-duplex,
synchronous/asynchronous, serial communication.

We discuss these terms in following sections.

RS232

c ﬁ[ | ]x | s

/
COM 1 port MAX232 EJART




Simplex vs. Duplex
Transmission

« Simplex transmission: the data can sent in
one direction.

— Example: the computer only sends data to the
printer.

Transmitter‘—) Receiver

* Duplex transmission: the data can be
transmitted and receive

Transmitter Transmitter

>

Recelver Receilver




Half vs. Full Duplex

« Half duplex: if the data Is transmitted one
way at a time.

Transmitter \ > / Receiver

Receiver / < \Transmitter

* Full duplex: if the data can go both ways at
the same time.

— Two wire conductors for the data lines.
Transmitter'—) Receiver

Receiver |€———————————ITransmitter




Serial vs Parallel Data Transfer

Serial Transfer

Sender

DO
>

>

Recelver

Other control lines

Parallel Transfer

DO-D7

Sender

IVVVVVVVV

Recelver

Other control lines




Serial Communication

« How to transfer data?

— Sender:

* The byte of data must be converted to serial bits
using a parallel-in-serial-out shift register.

* The bit Is transmitted over a single data line.
— Recelver

* The receiver must be a serial-in-parallel-out shift
register to receive the serial data and pack them

Into a byte.

—  register —~ 11101000001011 register -

8 — T = g-pit
parallel-in ‘A serial-in character

serial-out parallel-out



Asynchronous vs. Synchronous

e Serial communication uses two methods:

— In synchronous communication, data Is sent
In blocks of bytes.

(— byte | byte | byte | byte |ozo11111] 01010104—(")

sender preamble  receiver
— In asynchronous communication, data is sent
In bytes.
(O— | byte | j | byte byte |, O
sender / \ receiver

stop bit  start bit



UART & USART

* It Is possible to write software to use both
methods, but the programs can be tedious
and long.

« Special IC chips are made for serial

communication:

— USART (universal synchronous-asynchronous
receiver-transmitter)

— UART (universal asynchronous receiver-transmitter)

* The 8051 chip has a built-in UART.

— Half-duplex
— Asynchronous mode only



Framing (1/3)

 How to detect that a character is sent via the line
In the asynchronous mode?
— Answer: Data framing!

« Each character is placed In between start and
stop bits. This Is called framing.

—————————————— > Time (DO first)

markgsgi)tp 0 1 O O O O 0 1 Staailtrt marké

51\: c o T . :DO:T:

goes out last D7 goes out first




ne start
ne stop
ne stop

Framing (2/3)

ne LSB Is sent out first.

nit Is 0 (low) and always one bit.
nits 1s 1 (high).

nit can be one (if 8 bits used In

ASCII) or two bits (if 7 bits used in ASCII).
— In asynchronous serial communication,

peripheral chips and modems can be
orogrammed for data that is 7 or 8 hits.

When there iIs no transfer, the signal is 1
(high), which is referred to as mark.



Framing (3/3)

« We have a total of 10 bits for each character:
— 8-bits for the ASCII code
— 2-bits for the start and stop bits

* In some systems in order to maintain data
Integrity, the parity bit is included In the data
frame.

— In an odd-parity bit system the total number of bits,
Including the parity bit, is odd.

— UART chips allow programming of the parity bit for
odd-, even-, and no-parity options.



Handshaking signals to ensure fast & reliable
data transmission between Two devices

« DTR (Data Terminal Ready): when the terminal is turned
ON, after going through a self test, it sends out a signal
DTR to indicate that it is ready for communication. This is
an i/p pin from DTE & an i/p to the modem.

« DSR (Data Set Ready): when DCE (modem) is turned on
& has gone through the self test, it asserts DSR to indicate
that it is ready to communicate .It is an o/p from modem &
I/p to the pc (DTE).

 RTS (Request To Send): When the DTE device has a byte
to transmit, it asserts RTS to signal the modem that it has

a byte of data to transmit



CTS (clear to send): in response to RTS, when the
modem has room for storing the data it is to
receive, it sends out signal CTS to the DTE to
Indicate that it can receive the data now.

DCD (data carrier detect): the modem asserts signal
DCD to inform the DTE that a valid carrier has
been detected & that contact between it & the other
modem Is established

RI (ring detector): an o/p from the modem & an i/p to
PC indicates that the telephone is ringing. It gives
on & OFF In synchronization with the ringing sound



How to communicate 8051 to PC

Connect TXD to RXD and RXD to TXD from pc to 8051

Use max232 to transform signal from TTL level to RS232
level

The baud rate of the 8051 must matched to the baud rate of the pc

PC standard baud rates
— 2400-4800-9600-14400-19200-28800-33600-57600

Serial mode 1 is used

Timer 1 is used

The 8051 UART divides the machine cycle frequency by 32
Machine cycle is 1/12 XTAL frequency

We use timerl in mode 2 (auto reload)



MAX 232

Veo % c3
. 16 ) =
11
o] Max2s2 o[
+: F. | 04
czdd e 3+
OuUT
I L — 14
R1 IN
12 = o] 13
T2In T2our
10 Dc 7
R2out R2IN
9 a-q 8
TTLside 15 | RS232side
-

8051
MAX232
P31 11 1 a 2
p3.ol 10 12 3 3
RxD

Figure 10.7: (2) Inside MAX232 and (b) its Connection to the 8051 (Null Modem)




TxD and RxD pins in the 8051

 In 8051, the data iIs received from or
transmitted to

— RxD: received data (Pin 10, P3.0)
— TxD: transmitted data (Pin 11, P3.1)

« TXD and RxD of the 8051 are TTL
compatible.

* The 8051 requires a line driver to make
them RS232 compatible.

— One such line driver is the MAX232 chip.



PC Baud Rates

« PC supports several
baud rates.

* HyperTerminal
supports baud rates
much higher than the

ones list In the Table.

110 bps
150
300
600
1200
2400
4800
9600 (default)
19200

Note: Baud rates supported by
486/Pentium IBM PC BIOS.



Baud Rates in the 8051 (1/2)

« The 8051 transfers and receives data serially at
many different baud rates by using UART.

 UART divides the machine cycle frequency by
32 and sends it to Timer 1 to set the baud rate.

« Signal change for each roll over of timer 1

11.0592 MHz

XTAL
oscillator

+~ 12

Machine cycle

frequency

921.6 kHz

>

+ 32
By UART

28800 Hz

To timer 1
To set the
Baud rate

> Timer 1




Baud Rates in the 8051 (2/2)

 Timer 1, mode 2 (8-bit, auto-reload)

 Define TH1 to set the baud rate.
— XTAL =11.0592 MHz

— The system frequency = 11.0592 MHz / 12 =
921.6 kHz

— Timer 1 has 921.6 kHz/ 32 = 28,800 Hz as
source.

— TH1=FDH means that UART sends a bit
every 3 timer source.

— Baud rate = 28,800/3= 9,600 Hz



Example

With XTAL = 11.0592 MHz, find the TH1 value needed to have
the following baud rates. (a) 9600 (b) 2400 (c) 1200

Solution:

With XTAL = 11.0592 MHz, we have:
The frequency of system clock = 11.0592 MHz / 12 = 921.6kHz
The frequency sent to timer 1 = 921.6 kHz/ 32 = 28,800 Hz

(a) 28,800/ 3 =9600 where -3 =FD (hex) is loaded ontoTH1

(0)28,800/ 12 = 2400 where -12 = F4 (hex) is loaded intoTH1

(c)28,800 /24 = 1200 where -24 = E8 (hex) is loaded intoTH1



Registers Used In Serial
Transfer Circuit

« SBUF (Serial data buffer)
« SCON (Serial control register)
« PCON (Power control register)



SBUF Register

« Serial data register. SBUF
MOV SBUF,#’A’ ;putchar ‘A’ to transmit
MOV SBUF,A 'send data from A
MOV A, SUBF ,receive and copy to A
— An 8-bit register
— Set the usage mode for two timers

* For a byte of data to be transferred via the TxD
line, it must be placed in the SBUF.

« SBUF holds the byte of data when it is received by
the 8051;s RxD line.



Serial port block diagram

TXD RXD
(P3.1) (P3.0)

| I—‘ D

SBUF ; ;

CLK o Q] Shift register
(write-only) CLK

Baud rate L Baud rate
clock S clock
(transmit) S (receive)

SBUF
(read-only)

FIGURE 5-1
Serial port block diagram



SCON Register

« Serial control register: SCON
SMO, SM1 Serial port mode specifier
REN (Receive enable) set/cleared by software to
enable/disable reception.
Tl Transmit interrupt flag( set by HW & clear by SW)
RI Receive interrupt flag (set by HW & clear by SW)

SM2 = TB8 = RB8 =0 (not widely used)

(MSB) (LSB)
sMo[smi1]sM2]REN] TB8[RB8] TI [ R

* SCON is bit-addressable.




REN (Recelve Enable)

« SCON.4

« Set/cleared by software to enable/disable
reception.
— REN=1
* It enable the 8051 to receive data on the RxD pin of the 8051.

* |f we want the 8051 to both transfer and receive data, REN
must be set to 1.

« SETB SCON.4
— REN=0
 The receiver is disabled.

 The 8051 can not receive data.
« CLR SCON.4



TB8 (Transfer Bit 8)
+ SCON.3

« TB8 Is used for serial modes 2 and 3.
e The 9t bit that will be transmitted in mode 2 & 3.
» Set/Cleared by software.

RB8 (Recelve Bit 8)
+ SCON.2

* In serial mode 1, RB8 gets a copy of the stop bit
when an 8-bit data Is received



Tl (Transmit Interrupt Flag)

SCON.1

When the 8051 finishes the transfer of the
8-bit character, it raises the Tl flag.

Tl Is raised by hardware at the beginning
of the stop bit iIn mode 1.

Must be cleared by software.



Rl (Recelve Interrupt)

SCON.O

Recelve interrupt flag. Set by hardware
halfway through the stop bit time in mode
1. Must be cleared by software.

When the 8051 receives data serially via
RXD, it gets rid of the start and stop bits
and place the byte in the SBUF register.

hen 8051 rises RI to indicate that a byte.
Rl Is raised at the beginning of the stop bit.




SMO, SM1

 SM1 and SMO determine the framing of
data.

— SCON.6 (SM1) and SCON.7 (SMO)
— Only mode 1 i1s compatible with COM port of

PC.
SM1 SMO Mode Operating Mode Baud Rate
0 0 0 Shift register  Fosc./12
0 1 1 8-bit UART  Variable by timerl
1 0 2 9-bit UART  Fosc./64 or Fosc./32
1 1 3 9-bit UART Variable



Mode O :

Serial data enters and exits through RxD
TxD outputs the shift clock.
8 bits are transmitted/received(LSB first)

The baud rate Is fixed a 1/12 the
oscillator frequency.



Mode 1

Ten bits are transmitted (through TxD) or received
(through RxD)

A start bit (0), 8 data bits (LSB first), and a stop bit (1)
On receive, the stop bit goes into RB8 in SCON

the baud rate is determined by the Timer 1 overflow
rate.

Timerl clock is 1/32 machine cycle (MC=1/12 XTAL)

Timer clock can be programmed as 1/16 of machine
cycle

Transmission is initiated by any instruction that uses
SBUF as a destination register.



On-chip +12 _» Baud rate

oscillator clock
(a) Mode 0
+ 64 SMOD =0
On-chip 1 - 5 Baud rate
oscillator T clock
+ 32 SMOD =1
(b) Mode 2
+ 32 SMOD =0
Timer 1 l__ > Baud rate
overflow = clock
+ 16 SMOD =1

(c) Modes 1 and 3



Mode 2 :

Eleven bits are transmitted (through TxD), received
(through RxD)

« A start bit (0)

« 8 data bits (LSB first)

« A programmable 9th data bit

« and a stop bit (1)

On transmit, the 9th bit (TB8) can be assigned 0Oor 1
On receive, the 9th data bit goes into RB8 in SCON.
the 9th can be parity bit

The baud rate is programmable to 1/32 or 1/64 the
oscillator frequency in Mode 2 by SMOD bit in PCON

register



e Mode 3
— Same as mode 2

— But may have a variable baud rate generated
from Timer 1.



Importance of Tl flag (1/2)

« The following sequence is the steps that the
8051 goes through In transmitting a character
via TxD:

The byte character to be transmitted is written into
the SBUF reqister.

1.

It transfers the start bit.

The 8-bit character iIs transferred one bit at a time.

4. The stop bit is transferred.

8-bit char

SBUF

Tl -

UART

bit by bit

> TxD



Sequence continuous:
5. During the transfer of the stop bit, the 8051

raises the TI flag, indicating that the last
character was transmitted and it is ready to
transfer the next character.

. By monitoring the Tl flag, we know whether or

not the 8051 is ready to transfer another byte.
— We will not overloading the SBUF register.

— If we write another byte into the SBUF before Tl is
raised, the untransmitted portion of the previous
byte will be lost.

. After SBUF Is loaded with a new byte, the TI

flag bit must be cleared by the programmer.



Steps to program the 8051 to
transfer data serially

1.The TMOD register is loaded with the value 20H,
iIndicating the use of timer 1 in mode 2 to set the
band rate.

2.The TH1 is loaded with one of the values given
In table below to set the band rate.

Band rate TH1(HEX) TH1(Decimal)

9600 FD - 3
4800 FA - 6
2400 F4 -12

1200 E8 - 24



3.The SCON register is loaded with the value
50H, indicating serial mode 1.

4.TR1 Is set to 1 to start timer 1.
5.Tl Is cleared by the CLR TI instruction.

6.The character byte to be transferred serially is
written into the SBUF register.

/. The TI flag bit is monitored using JNB TI,XX
to see If the character has been transferred
completely.

8.To transfer next character ,go to step 5.




Example

1. Write a program for the 8051 to transfer letter “A”
serially at 4800baud, continuously.

MOV TMOD, #20H :timer 1, mode 2

MOV TH1,#-6 4800 baud rate
MOV SCON, #50H ;8-bit,1 stop,REN enabled
SETB TR1 start timer 1
AGAIN: MOV SBUF,#”A” :letter “A” to be transferred
HERE: JNB TI,6HERE ‘wait for the last bit
CLR TI .clear TI for next char

SJMP AGAIN keep sending A



2. Write a program to transfer the message “YES” serially at
9600 baud, 8-bit data, 1 stop bit. Do this continuously.

MOV TMOD, #20H ;timer 1, mode 2

MOV TH1,#-3 9600 baud
MOV SCON, #50H

SETB TR1
AGAIN:MOV A,#"Y” :transfer “Y”
ACALL TRANS
MOV A,#”E” :transfer “E”
ACALL TRANS
MOV A,#”S” :transfer “S”
ACALL TRANS
SJMP AGAIN ;keep doing it
;serial data transfer subroutine
TRANS :MOV SBUF,A ‘load SBUF
HERE: JNB TI,HERE 'walit for last bit to transfer
CLR TI ;get ready for next byte

RET



3. Write a program to send a message “Global Academy Of
Technology” to the PC serially.
Org O
mov Tmod, #20h : Timer 1, mode 2
mov TH1 , #0FAh 4800 baud rate
mov SCON, # 50h ; 8bit, 1stop, REN enabled
SETB TR1
mov DPTR , # MYDATA
L1: CLR A
movc A, @A+DPTR
JZ L3 : check for last character
ACALL SEND
INC DPTR
SIMP L1
SEND: mov SBUF , A
L2 : JNBTI, L2
CLR TI
RET
MYDATA DB “Global Academy Of Technology”, 0
L3 : END



4. Assume a switch iIs connected to pin P1.7. Write a program to
monitor its status & send two messages to serial port
continuously as follows: SW=0 send "NO”",SW=1 send “YES".

Swl EQU P1.7
org 00h
Main:mov TMOD , #20h
mov TH1, # -3 9600 baud rate
mov SCON , #50h
SETB TR1
SETB SW1 ; make SW an i/p
S1:. JB P1.7, next ; if SW=0, Display “NO”
mov DPTR, # messl
FN: CLR A
movC A, @a+DPTR
JZ S1
ACALL SENDCOM
INC DPTR
SIMP FN



Next: mov DPTR, #mess2
LIN: CLR A
movC A, @A+DPTR
JZ S1
ACALL SENDCOM
INC DPTR
SJMP LN
SENDCOM: mov SBUF A
Here: JNB TI, Here
CLR TI
RET
Mess1 DB ‘NO’, O
Mess2 DB ‘YES’, O
END

if SW=1, display “YES”



5. A PC is connected to an 8051 system using RS232
Interface. Using a 6.0MHz clock for the 8051, design the
8051 program that will transmit the word ‘impossible’ when
the PC sends a word ‘mission’.

With XTAL = 6.0 MHz, we have:
The frequency of system clock = 6.0 MHz / 12 = 500 kHz
The frequency sent to timer 1 = 500 kHz/ 32 = 15625 Hz
15625/ 142 =110 where 142 =8E (hex)

ORG 100
Sta: MOV SCON, #50H
MOV TMOD, #20H
MOV TH1, 8EH
SETB TR1
Rec: MOV RO, #00
MOV DPTR, #MSG1
Wait: INB RI, wait
MOV A, SBUF
MOV P1,A



CLR RI
CLR A
MOVC A, @A+DPTR
CINE A, 01, sta ; compare values from table with received byte
INC DPTR
INC RO
CJINE RO, #07, wait ; receive 7 characters
MOV DPTR #MSG2
MOV RO, #00
Wr: CLR A
MOVC A, @A+DPTR
MOV SBUF, A
Trl: INB TI, trl
CLR TI
INC RO
CJINE RO, #0AH, wr ; check if all characters are written ‘ impossible’
SIMP rec

MSG1 DB :mission’
MSG2 DB ‘impossible’



Importance of the RI flag

« The following sequence is the steps that the
8051 goes through in receiving a character via

RXxD:

1. 8051 receives the start bit indicating that the next
bit is the first bit of the character to be received.

2. The 8-bit character is received one bit at a time.
When the last bit is received, a byte is formed and

placed in SBUF.

RxD

bit by bit

| UART

SBUF

8-bit
character

» RI




Sequence continuous:
3. The stop bit is received. During receiving the stop

bit, the 8051 make RI=1, indicating that an entire
character was been received and must be picked
up before it gets overwritten by an incoming
character.

. By monitoring the RI flag, we know whether or not

the 8051 has received a character byte.

— If we falil to copy SBUF into a safe place, we risk the loss
of the received byte.

. After SBUF is copied into a safe place, the RI flag

bit must be cleared by the programmer.



Steps to program the 8051 to
receive data serially

Step 1,2 ,3 ,4 are same as transmitter.
5. Rl is cleared with CLR RI instruction.

6.The RI flag bit is monitored with JNB
RI,XX to see If an entire character has
been received yet.

/.When Rl is raised, SBUF has a byte.
8. To receive the next character , go to step 5.



Example

1. Program the 8051 to receive bytes of data serially,
and put them in P1. Set the baud rate at 4800, 8-
bit data, and 1 stop bit.

Solution:

MOV  TMOD, #20H ;timerl, mode 2 (auto reload)

MOV THIL, #-6 ;4800 baud
MOV  SCON, #50H ;8-bit, 1 stop, REN enabled

SETB TR1 ;Start timer 1
HERE: JNB RI,HERE ; wait for char to come in
MOV A, SBUF ;save incoming byte in A
MOV P1,A ;send to port 1
CLR RI ;get ready to receive next byte

SJMP HERE ;keep getting data



Doubling the baud rate in the 8051

Two methods:
1.To use higher frequency crystal
2.To change a bit in the PCON reqister is D7 (SMOD)

First one is not flexible since crystal is fixed. The new crystal

may not be compatible with the IBM PC serial comports
baud rate.

When the 8051 is powered up D7(SMOD bit) if the PCON

register is zero. It can be set to high by software and there
by double the baud rate. It is not bit addressable

mov A, PCON
SETB ACC.7
mov PCON, A



When SMOD=0, Timer
frequency=11.0592MHz = 921.6KHz

12
921.6KHz = 28800Hz
32

When SMOD=1, Timer
frequency=11.0592MHz = 921.6KHz

12
021.6KHz = 57600HZ
16




The following table shows the values loaded into TH1 for both
cases.

TH1(Decimal) (HEX) SMOD=0 SMOD=1
-3 FD 9600 19200
-6 FA 4800 9600
-12 F4 2400 4800
- 24 F8 1200 2400

* Find the baud rate if TH1=- 2, SMOD=1& XTAL=11.0592MHz
IS this baud rate supports by IBM /compatible PC’s?

Timer 1 frequency = 57600Hz ,with SMOD=1
The baud rate =57600 = 28800
2
This baud rate is not Supported by the BIOS of the PC



Power control register
MSB LSB

MOD| — | — | — | GF | GFO | PD | IO

BIT SYMBOL  FUNCTION

PCON.7 SMOD  Double Baud rate bit, When set toa 1 and Timer 1 is used to generate baud rate, and the Sert
al Portis used inmodes 1,2, or 3,

PCONE6  — Reserved,
PCONS  — Reserved,
PCON4  — Reserved,

PCON.3 ~ GF General-purpose flag bit,
PCON.2 ~ GFO General-purpose flag bt

PCON.1 PD Power-Down bit, Seting this bit activates power-down operation.
PCON.0 DL [dle mode bit, Setting this bit activate icle mode operation.



What is SMOD

Bit 7 of PCON reqister
f SMOD=1 double baud rate
PCON Is not bit addressable

How to set SMOD

Mov a, pcon
Setb acc.7
Mov pcon,a




Example:

1.Write a program to send the message “The Earth is
One Country” to serial port. Assume a SW is
connected to pin P1.2. Monitor its status and set the
baud rate as follows.

SW=0 4800 baud rate
SW=1 ;9600 baud rate
Assume XTAL=11.0592 MHz, 8bit data , and 1 stop bit.

org Oh ,starting position
Main: mov TMOD , # 20h
mov TH1, # -6 ;4800 baud rate (default)
mov SCON, #50h
SETB TR1
SETB P1.2 ;make SW an input

S1: JNB P1.2, SLOWSP : check SW status



mov A, PCON : read PCON

SETB ACC.7 ; set SMOD High for 9600
mov PCON A - write PCON
SJMP FN ; send message
SLOWSP: mov A, PCON ' read PCON
CLR ACC.7 : make SMOD low for 4800
mov PCON | A - write PCON
FN: CLR A
movc A, @A+DPTR ; read value
JZ S1 : check for end of line
ACALL SENDCOM ; send value to the serial port
INC DPTR  move to next value
SIMP FEN ; Repeat
SENDCOM: mov SBUF , A ; place value in buffer
Here: JNB T1, Here . walt until transmitted
CLRT1 .clear
RET , return

Mess1 DB “The Earth is One Country” , 0
END



4. Write a program to transfer ASCII character ‘B’
continuously. Compute the frequency used by
timer 1 to set the baud rate. Also find the baud

rate of the data transfer.
Mov A, pcon
Setb Acc.7
Mov pcon,A
Mov tmod, #20h
Mov thl, #-3
Mov scon, #50h
Setb trl



Mov A#B’
Loop: clr Tl
Mov sbuf, A
L1:jnb TI, 11
Simp loop

With smod=1, 021.6 khz/16 = 57600hz
Baud rate of the data transfer is 57600/3 = 19200



